Optics

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element

Polarization Optics

Filters & Attenuators

Gas Cells

Ø = Lens Diameter

 $M = \frac{S}{S}$ Magnification or Conjugate Ratio

Spherical Lens Parameters

f = EFL (Effective Focal Length)

 $\frac{1}{f} = \frac{1}{S} + \frac{1}{S'}$ Paraxial Lens Formula (assumes sin $\theta \approx \theta$)

S = Object Distance, positive for objects to the left

of the front principal point P.

 S^\prime = Image Distance, positive for images to the right of the rear rear principal point P^\prime

Transmission of Various Materials

GLASS	DESCRIPTION	TRANSMISSION		
BK7	BK7 is a high-quality optical glass commonly used to make lenses intended for laboratory use. It has excellent mechanical and optical properties as well as good transmission in the visible and IR.	350nm to 2.0µm	BK7 TRANSMISSION 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
UV Fused Silica	UV fused silica is an excellent material for the transmission of UV light. It is durable and has good mechanical properties $T_{external} \ge 80\%/cm @ 185nm$ $T_{internal} \ge 88\%/cm @ 185nm$	185nm to 2.1µm	UV Fused Silica Transmission UV Fus	1mm Thick Sample Surface Reflections Included
CaF ₂	Calcium fluoride provides great transmission from the UV to the IR. Synthetic CaF_2 is used to improve deep UV transmission and to increase the damage threshold.	180nm to 8.0μm	CaF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
MgF_2	Magnesium fluoride, an extremely rugged and durable material, is transparent over an extensive range of wavelengths from the UV to the IR.	200nm to 6.0µm	MgF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included

Optics

Spherical Singlet Anti-Reflection Coatings

Most of our standard optics are available with high-performance, multilayer AR coatings, which minimize surface reflections within the specified wavelength ranges. These coatings are designed for angles of incidence between 0° and 30° (0.5 NA). For optics intended to be used at large

- R < 0.5% Average Over Band at 0° Incidence
- Less Angular Sensitivity within Angular Range
- Frequently Run Coatings are Listed Below

angles, consider using a custom coating optimized at a 45° of incidence; these coatings are effective from 25° to 52°. The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength for a single surface. Broadband coatings have a typical absorption of 0.25% that is not shown in the reflectivity plots.

Normal Incidence Broadband Multilayer Anti-Reflective Coating

COATING CODE	WAVELENGTH RANGE	DESIGN ANGLE OF INCIDENCE	USEFUL ANGLE OF INCIDENCE		
-UV	290-370nm	0°	0 to 30°		
-A	350-650nm	0°	0 to 30°		
-B	650-1050nm	0°	0 to 30°		
-C	1050-1620nm	0°	0 to 30°		

Optics

Optical Systems

E-O Devices

Multi-Element

Diffusers

Windows

Gratings

Polarization Optics

Filters & Attenuators

Gas Cells

Free Space Isolators

Spherical Singlets

Cylindrical Lenses

CaF₂ Vacuum UV: Plano-Convex Lenses

Specifications

- **Material:** Vacuum Grade CaF₂
- Wavelength Range: 180nm to 8.0µm Uncoated
- Dia. Tolerance: +0.00/-0.10mm
- Focal Length Tolerance:
- ±1% @ 248nm
- Scratch-Dig: 40-20
- **Centration:** 3arcmin
- **Clear Aperture:** 90% of Dia.
- Design Wavelength: 588nm (n = 1.43388)
- **Coating:** None

Plano-Convex Lenses: Material CaF₂

	DIA	f		R	t _c	te1	fb	SUGGESTED				
ITEM #	(mm)	(mm)	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)	MOUNT ²	
LA5315	12.7	20.0	\$ 98.00	£ 61.70	€ 91,10	¥ 935.90	8.7	4.3	1.5	17.0		
LA5183	12.7	50.0	\$ 100.00	£ 63.00	€ 93,00	¥ 955.00	21.7	2.5	1.5	48.3	LMR05	
LA5458	12.7	80.0	\$ 90.00	£ 56.70	€ 83,70	¥ 859.50	34.7	2.1	1.5	78.5		
LA5370	25.4	40.0	\$ 145.00	£ 91.40	€ 134,90	¥ 1,384.80	17.4	7.5	2.0	34.8		
LA5763	25.4	50.0	\$ 155.00	£ 97.70	€ 144,20	¥ 1,480.30	21.7	6.1	2.0	45.7		
LA5042	25.4	75.0	\$ 185.00	£ 116.60	€ 172,10	¥ 1,766.80	32.5	4.6	2.0	71.8		
LA5817	25.4	100.0	\$ 92.00	£ 58.00	€ 85,60	¥ 878.60	43.4	3.9	2.0	97.3		
LA5012	25.4	150.0	\$ 102.00	£ 64.30	€ 94,90	¥ 974.10	65.1	3.3	2.0	147.7	LMR1	
LA5714	25.4	200.0	\$ 103.00	£ 64.90	€ 95,80	¥ 983.70	86.8	2.9	2.0	198.0		
LA5255	25.4	250.0	\$ 123.00	£ 77.50	€ 114,40	¥ 1,174.70	108.5	2.7	2.0	248.1		
LA5464	25.4	500.0	\$ 97.00	£ 61.10	€ 90,20	¥ 926.40	216.9	2.4	2.0	498.3		
LA5956	25.4	750.0	\$ 102.00	£ 64.30	€ 94,90	¥ 974.10	325.4	2.2	2.0	748.4		
LA5835	25.4	1000.0	\$ 100.00	£ 63.00	€ 93,00	¥ 955.00	433.9	2.2	2.0	998.5		

1) Edge thickness given before 0.2mm @ 45° typical chamfer

2) See the Lens Mount Section, Starting on Page 153.

 Average Transmission >90% from 200nm to 6μm

Magnesium Fluoride: Plano-Convex Lenses

With a transmission window from 200nm to 6μ m, Vacuum Grade UV MgF₂ is an ideal material for many biological and military imaging applications. Magnesium Fluoride is extremely durable in comparison to other materials that are transparent from the UV to the IR. The C-axis of the MgF₂ crystalline structure is oriented to minimize birefringence.

Specifications

- Material:
- Vacuum Grade UV MgF₂Wavelength Range:
- 200nm to 6µm Uncoated
- Dia. Tolerance: +0.00/-0.10mm
 Center Thickness Tolerance:
 - ±0.2mm
- Focal Length Tolerance: ±2% @ 633nm
- **Scratch-Dig:** 40-20
- **Centration:** 3arcmin
- **Clear Aperture:** 90% of Dia.
- Alignment to C-Axis: <20arcmin
- **Coating:** None

Plano-Convex Lenses: Material MgF

										га	10-00	MIVE	Lense	es. Material Myr ₂
	DIA	FC	OCAL LEN	NGTH (m	m)	PRICE				R	t _c	t _e ¹	fb	SUGGESTED
ITEM #	(mm)	200nm	486nm	633nm	2.0µm	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)	MOUNT ²
LA6002	25.4	44.6	49.6	50	51.2	\$ 333.00	£ 209.80	€ 309,70	¥ 3,180.20	18.9	6.9	2.0	45.0	
LA6003	25.4	53.3	59.4	60	61.4	\$ 307.00	£ 193.40	€ 285,50	¥ 2,931.90	22.6	6.0	2.1	55.5	
LA6004	25.4	66.8	74.4	75	76.9	\$ 291.00	£ 183.30	€ 270,60	¥ 2,779.10	28.3	5.0	2.0	71.4	
LA6005	25.4	89.3	99.4	100	102.8	\$ 270.00	£ 170.10	€ 251,10	¥ 2,578.50	37.8	4.3	2.1	97.1	
LA6006	25.4	133.7	148.7	150	153.7	\$ 250.00	£ 157.50	€ 232,50	¥ 2,387.50	56.6	3.2	1.8	147.7	LMR1
LA6007	25.4	178.2	198.3	200	205.0	\$ 239.00	£ 150.60	€ 222,30	¥ 2,282.50	75.4	3.2	2.1	197.7	
LA6008	25.4	222.8	247.9	250	256.2	\$ 229.00	£ 144.30	€ 213,00	¥ 2,187.00	94.3	2.8	1.9	248.0	
LA6009	25.4	445.5	495.8	500	512.5	\$ 218.00	£ 137.30	€ 202,70	¥ 2,081.90	188.5	2.6	2.2	498.1	
LA6010	25.4	891.1	991.6	1000	1024.9	\$ 213.00	£ 134.20	€ 198,10	¥ 2,034.20	377.0	2.4	2.2	998.3	

Edge thickness given before 0.2mm @ 45° typical chamfer.
 See the Lens Mount Section, Starting on Page 153.

THORLABS