1x2 Rotary Joint Splitter

  • 50:50 Intensity Split of Input Light Over 400 - 700 nm Range
  • Protects Against Fiber Damage from Moving Specimen
  • Recommended for Patch Cables with ≥Ø200 µm Core, 0.22 to 0.50 NA Fiber



RJ2 1x2 Rotary Joint Mounted using SM30TC Tube Clamp, RA90RS Adapter, and Ø1/2" and Ø1" Posts

Compatible with FC/PC Connectors

Related Items

Please Wait
Operating Wavelength 400 - 700 nm
Split Ratio 50:50 ± 5% (Typ.)
Transmissionb LED 30% Per Leg (Typ.)
Laser 35% Per Leg (Typ.)
Rotational Variation of Transmissionc LED <±3.5%
±1.75% (Typ.)
Laser <±6.0%
±3.5% (Typ.)
Start-Up Torque <150 µN·m
Recommended Fiber Core Diameter ≥200 µm
Recommended Fiber NA 0.22 - 0.50
  • Specified for patch cables with the recommended fiber core diameter and NA. Specifications do not apply to single-clad multimode fibers with a Ø200 µm core and 0.22 NA, and those with a second TECS-based cladding should be used instead. For fiber-specific performance data, please see the Performance tab.
  • Transmission per output leg is given as percentage of the total input light. Total output is the total transmission through both legs of the splitter.
  • Defined as percent transmission variation about average output power of a single output leg as the rotary joint spins.

Click to Enlarge

Click Here for Raw Data
RJ2 typical transmission through each leg measured using a SLS201 Light Source and an optical spectrum analyzer. Leg A is the port closest to the axis of rotation while Leg B is the offset port. The shaded region indicates the operating wavelength range of the RJ2.

Click to Enlarge
Schematic illustrates the input and output ports of the RJ2 1x2 rotary joint.


  • Rotary Joint Protects Against Fiber Damage Caused by Moving Specimen
  • 400 - 700 nm Wavelength Range
  • 50:50 Intensity Split of Input Light
  • Low Transmission Variation During Rotation (See Performance Tab)
  • Precision Bearings Provide Extremely Smooth Rotation
  • Recommended for ≥Ø200 µm Core, 0.22 to 0.50 NA Patch Cables
  • Tested and Designed for Use with a Multimode Laser or Fiber-Coupled LED
  • Externally SM1-Threaded Housing for Secure Mounting

Thorlabs' RJ2 1x2 Rotary Joint Splitter is designed for optogenetics applications and is used to split light from a single input evenly between two outputs. The rotary joint interface allows connected patch cables to freely rotate, reducing the risk of fiber damage caused by a moving specimen. The rotary joint accepts any FC/PC-terminated patch cable, such as our optogenetics, multimode, and hybrid patch cables. For best performance, we recommend using multimode patch cables with a TECS-clad fiber, core diameter ≥Ø200 µm, and NA between 0.22 to 0.50.

The RJ2 is extensively modeled and tested for use with both LED and multimode laser light sources, as well as patch cables commonly used in optogenetics applications. The design incorporates a beamsplitter and lens to split light evenly over a broad 400 to 700 nm wavelength range with a typical total LED transmission of 60% through the rotary joint (30% in each leg) that varies less than ±3.5% per leg with rotation. Similar performance is achieved when using any recommended light source or patch cable (see the Performance tab for test data).

The RJ2 is tested and aligned during assembly using Ø200 µm core, 0.39 NA fiber patch cables and a previous-generation M470F3 Fiber-Coupled LED. Thorlabs can provide custom rotary joint splitters that are aligned and optimized using other patch cables or light sources; please contact Tech Support with inquiries. 

Mechanical Construction
The mechanical design of the RJ2 contains several features that help produce consistent optical performance across most application requirements. It features precision bearings for extremely smooth rotation, long lifetime, and low signal strength variations as the joint rotates. A low start-up torque of <150 µN·m ensures that the joint will rotate freely as the specimen moves. The input and output ports have a high-tolerance insert that enables repeatable and optimized alignment between patch cables and rotary joint. A flat surface placed on one side of the housing allows a user to rest the RJ2 on a table without rolling.

The RJ2 should be used in a vertical orientation as performance may be affected if used in a horizontal orientation. Thorlabs offers several options for mounting that allow the rotary joint to be held vertically. The rotary joint features external SM1 (1.035"-40) mounting threads on the input side for compatibility with our SM1-threaded fixed mounts. Alternatively, it can also be mounted directly via the Ø1.38" body using our SM30RC Slip Ring or SM30TC Tube Clamp. Thorlabs' optical post assemblies provide options for post-mounting and positioning for most experimental configurations.

Patch Cable Compatibility
The input and output ports of the rotary joint accept 2.0 mm narrow key and 2.2 mm wide key FC/PC connectors. Thorlabs recommends using multimode patch cables with a core diameter ≥Ø200 µm and NA between 0.22 to 0.50. For compatibility with our fiber-coupled LED sources, use a multimode hybrid patch cable with an FC/PC connector on one end and an SMA905 connector on the other end to connect the LED and splitter. On the output end, FC/PC optogenetics patch cables offer compatibility with our Ø1.25 mm and Ø2.5 mm cannulae via an interconnect or mating sleeve.

Optogenetics Product Family for In Vivo Applications

Thorlabs offers a wide variety of products designed to support in vivo optogenetics applications. Please visit the OG Selection Guide tab above to see a full listing of available products for different applications.

Optogenetics System Schematic

Click to Enlarge
Schematic illustrates the input and output ports of the RJ2 1x2 rotary joint.

Typical Performance Data and Comparison

For optogenetics applications, the transmission through the output legs as the rotary joint spins both affect the stability and intensity of light that reaches the specimen. Because the RJ2 is designed for use in many different types of experimental setups, testing under such conditions provides additional information about the typical performance. Properties of the connected patch cable that can affect transmission include the the fiber core diameter and NA. Properties of the light source, usually a multimode laser or LED, such as wavelength and beam divergence can also have an effect.

In the graphs below, we show the typical transmission and variance of the RJ2 with combinations of seven patch cable types and three light sources. The three light sources used in this test are the previous-generation M470F3 470 nm LED, S1FC473MM 473 nm Multimode Laser, and a M590F3 590 nm LED. These test results indicate that the RJ2 has very consistent performance across multiple fiber types and input light sources. In general, higher transmission and lower rotational variation is observed when the RJ2 is used with larger core diameter fibers. In addition, we compare the total transmission through the joint for the RJ2 and a non-Thorlabs design and find that the RJ2 provides higher transmission when used with 470 nm and 590 nm LED light sources. The raw data for the graphs can be viewed through the yellow collapsible table below.

Click to Enlarge
Plot of output transmission for Leg A (blue squares) and Leg B (red circles) as a percent of the total light input to the RJ2. The error bars indicate the measured variance due to rotation as the rotary joint spins. 

Click to Enlarge
Plot of total transmission through the rotary joint for the RJ2 (green squares) and for a
non-Thorlabs design (magenta circles). 

Click to Enlarge
RJ2 typical transmission measured using different fiber-coupled LEDs and an S120C power meter. Error bars indicate the measured variation in transmission due to joint rotation as it spins. This data was measured using Ø200 µm core, 0.39 NA fiber patch cables.
LED Item # Wavelengtha Typical Opsin
M470F3b 470 nm ChR2, ChR2-SFO
M490F3b 490 nm Rh-CT, ChR2 (E123A)
M505F1 505 nm ChRGR, Opto-α1AR, Opto-β2AR
M530F2 530 nm C1V1, VChR1
M565F3 565 nm Arch, VChR1-SFO
M590F3 590 nm ChR2-SFO, eNpHR3.0
M625F2 625 nm ReChR
  • Click the link for a spectrum and raw data.
  • These items are previous-generation fiber-coupled LEDs.

LED Performance

Thorlabs' fiber-coupled LEDs and drivers are well suited for integration into optogenetics experimental setups. During in vivo procedures, light from one or two LED sources is coupled into a fiber optic cannula, which is implanted in a specimen, where it is used to excite opsin proteins sensitive to the emitted light. LEDs are commonly used for these stimulation experiments as they provide high-power output over a broad range of wavelengths and exhibit superior illumination homogeneity than lasers.

The graph to right shows typical LED transmission per output leg when different fiber-coupled LEDs (listed in the table to the right) are used as the light source. Patch cables using Ø200 µm, 0.39 NA multimode fiber were used for the input and outputs. Transmission was measured using a S120C power meter.

Click to Enlarge
Total Internal Reflection in an Optical Fiber

Guiding Light in an Optical Fiber

Optical fibers are part of a broader class of optical components known as waveguides that utilize total internal reflection (TIR) in order to confine and guide light within a solid or liquid structure. Optical fibers, in particular, are used in numerous applications; common examples include telecommunications, spectroscopy, illumination, and sensors.

One of the more common glass (silica) optical fibers uses a structure known as a step-index fiber, which is shown in the image to the right. Step-index fibers have an inner core made from a material with a refractive index that is higher than the surrounding cladding layer. Within the fiber, a critical angle of incidence exists such that light will reflect off the core/cladding interface rather than refract into the surrounding medium. To fulfill the conditions for TIR in the fiber, the angle of incidence of light launched into the fiber must be less than a certain angle, which is defined as the acceptance angle, θacc. Snell's law can be used to calculate this angle:

where ncore is the refractive index of the fiber core, nclad is the refractive index of the fiber cladding, n is the refractive index of the outside medium, θcrit is the critical angle, and θacc is the acceptance half-angle of the fiber. The numerical aperture (NA) is a dimensionless quantity used by fiber manufacturers to specify the acceptance angle of an optical fiber and is defined as:

In step-index fibers with a large core (multimode), the NA can be calculated directly using this equation. The NA can also be determined experimentally by tracing the far-field beam profile and measuring the angle between the center of the beam and the point at which the beam intensity is 5% of the maximum; however, calculating the NA directly provides the most accurate value.


Number of Modes in an Optical Fiber

Each potential path that light propagates through in an optical fiber is known as a guided mode of the fiber. Depending on the physical dimensions of the core/cladding regions, refractive index, and wavelength, anything from one to thousands of modes can be supported within a single optical fiber. The two most commonly manufactured variants are single mode fiber (which supports a single guided mode) and multimode fiber (which supports a large number of guided modes). In a multimode fiber, lower-order modes tend to confine light spatially in the core of the fiber; higher-order modes, on the other hand, tend to confine light spatially near the core/cladding interface.

Using a few simple calculations, it is possible to estimate the number of modes (single mode or multimode) supported by an optical fiber. The normalized optical frequency, also known as the V-number, is a dimensionless quantity that is proportional to the free space optical frequency but is normalized to guiding properties of an optical fiber. The V-number is defined as:

where V is the normalized frequency (V-number), a is the fiber core radius, and λ is the free space wavelength. Multimode fibers have very large V-numbers; for example, a Ø50 µm core, 0.39 NA multimode fiber at a wavelength of 1.5 µm has a V-number of 40.8.

For multimode fiber, which has a large V-number, the number of modes supported is approximated using the following relationship.

In the example above of the Ø50 µm core, 0.39 NA multimode fiber, it supports approximately 832 different guided modes that can all travel simultaneously through the fiber.

Single mode fibers are defined with a V-number cut-off of V < 2.405, which represents the point at which light is coupled only into the fiber's fundamental mode. To meet this condition, a single mode fiber has a much smaller core size and NA compared to a multimode fiber at the same wavelength. One example of this, SMF-28 Ultra single mode fiber, has a nominal NA of 0.14 and an Ø8.2 µm core at 1550 nm, which results in a V-number of 2.404.


Click to Enlarge
Attenuation Due to Macrobend Loss

Click to Enlarge
Attenuation Due to Microbend Loss

Click to Enlarge
Beam profile measurement of FT200EMT multimode fiber and a former generation M565F1 LED (replaced by the M565F3) showing light guided in the cladding rather than the core of the fiber.

Sources of Attenuation

Loss within an optical fiber, also referred to as attenuation, is characterized and quantified in order to predict the total transmitted power lost within a fiber optic setup. The sources of these losses are typically wavelength dependent and range from the material used in the fiber itself to bending of the fiber. Common sources of attenuation are detailed below:

Because light in a standard optical fiber is guided via a solid material, there are losses due to absorption as light propagates through the fiber. Standard fibers are manufactured using fused silica and are optimized for transmission from 1300 nm to 1550 nm. At longer wavelengths (>2000 nm), multi-phonon interactions in fused silica cause significant absorption. Fluoride glasses such as ZrF4 and InF3 are used in manufacturing Mid-IR optical fibers primarily because they exhibit lower loss at these wavelengths. ZrF4 and InF3 fibers have a multi-phonon edge of ~3.6 µm and ~4.6 µm, respectively.

Contaminants in the fiber also contribute to the absorption loss. One example of an undesired impurity is water molecules that are trapped in the glass of the optical fiber, which will absorb light around 1300 nm and 2.94 µm. Since telecom signals and some lasers operate in that same region, any water molecules present in the fiber will attenuate the signal significantly.

The concentration of ions in the fiber glass is often controlled by manufacturers to tune the transmission/attenuation properties of a fiber. For example, hydroxyl ions (OH-) are naturally present in silica and absorb light in the NIR-IR spectrum. Therefore, fibers with low-OH content are preferred for transmission at telecom wavelengths. On the other hand, fibers with high-OH content typically exhibit increased transmission at UV wavelengths and thus may be preferred by users interested in applications such as fluorescence or UV-VIS spectroscopy. 

For the majority of fiber optics applications, light scattering is a source of loss that occurs when light encounters a change in the refractive index of the medium. These changes can be extrinsic, caused by impurities, particulates, or bubbles; or intrinsic, caused by fluctuations in the glass density, composition, or phase state. Scattering is inversely related to the wavelength of light, so scattering loss becomes significant at shorter wavelengths such as the UV or blue regions of the spectrum. Using proper fiber cleaning, handling, and storage procedures may minimize the presence of impurities on tips of fibers that cause large scattering losses.

Bending Loss
Losses that occur due to changes in the external and internal geometry of an optical fiber are known as bending loss. These are usually separated into two categories: macrobending loss and microbending loss.

Macrobend loss is typically associated with the physical bending of an optical fiber; for example, rolling it in a tight coil. As shown in the image to the right, guided light is spatially distributed within the core and cladding regions of the fiber. When a fiber is bent at a radius, light near the outer radius of the bend cannot maintain the same spatial mode profile without exceeding the speed of light. Instead, the energy is lost to the surroundings as radiation. For a large bend radius, the losses associated with bending are small; however, at bend radii smaller than the recommended bend radius of a fiber, bend losses become very significant. For short periods of time, optical fibers can be operated at a small bend radius; however, for long-term storage, the bend radius should be larger than the recommended value. Use proper storage conditions (temperature and bend radius) to reduce the likelihood of permanently damaging the fiber; the FSR1 Fiber Storage Reel is designed to minimize high bend loss.

Microbend loss arises from changes in the internal geometry of the fiber, particularly the core and cladding layers. These random variations (i.e., bumps) in the fiber structure disturb the conditions needed for total internal reflection, causing propagating light to couple into a non-propagating mode that leaks from the fiber (see the image to the right for details). Unlike macrobend loss, which is controlled by the bend radius, microbend loss occurs due to permanent defects in the fiber that are created during fiber manufacturing.

Cladding Modes
While most light in a multimode fiber is guided via TIR within the core of the fiber, higher-order modes that guide light within both the core and cladding layer, because of TIR at the cladding and coating/buffer interface, can also exist. This results in what is known as a cladding mode. An example of this can be seen in the beam profile measurement to the right, which shows cladding modes with a higher intensity in the cladding than in the core of the fiber. These modes can be non-propagating (i.e., they do not fulfill the conditions for TIR) or they can propagate over a significant length of fiber. Because cladding modes are typically higher-order, they are a source of loss in the presence of fiber bending and microbending defects. Cladding modes are also lost when connecting two fibers via connectors as they cannot be easily coupled between optical fibers.

Cladding modes may be undesired for some applications (e.g., launching into free space) because of their effect on the beam spatial profile. Over long fiber lengths, these modes will naturally attenuate. For short fiber lengths (<10 m), one method for removing cladding modes from a fiber is to use a mandrel wrap at a radius that removes cladding modes while keeping the desired propagating modes.


Launch Conditions

Underfilled Launch Condition
For a large multimode fiber which accepts light over a wide NA, the condition of the light (e.g., source type, beam diameter, NA) coupled into the fiber can have a significant effect on performance. An underfilled launch condition occurs when the beam diameter and NA of light at the coupling interface are smaller than the core diameter and NA of the fiber. A common example of this is launching a laser source into a large multimode fiber. As seen in the diagram and beam profile measurement below, underfilled launches tend to concentrate light spatially in the center of the fiber, filling lower-order modes preferentially over higher-order modes. As a result, they are less sensitive to macrobend losses and do not have cladding modes. The measured insertion loss for an underfilled launch tends to be lower than typical, with a higher power density in the core of the fiber. 

Diagram illustrating an underfilled launch condition (left) and a beam profile measurement using a FT200EMT multimode fiber (right).

Overfilled Launch Condition
Overfilled launches are defined by situations where the beam diameter and NA at the coupling interface are larger than the core diameter and NA of the fiber. One method to achieve this is by launching light from an LED source into a small multimode fiber. An overfilled launch completely exposes the fiber core and some of the cladding to light, enabling the filling of lower- and higher-order modes equally (as seen in the images below) and increasing the likelihood of coupling into cladding modes of the fiber. This increased percentage of higher-order modes means that overfilled fibers are more sensitive to bending loss. The measured insertion loss for an overfilled launch tends to be higher than typical, but results in an overall higher output power compared to an underfilled fiber launch. 

Diagram illustrating an overfilled launch condition (left) and a beam profile measurement using a FT200EMT multimode fiber (right).

There are advantages and disadvantages to underfilled or overfilled launch conditions, depending on the needs of the intended application. For measuring the baseline performance of a multimode fiber, Thorlabs recommends using a launch condition where the beam diameter is 70-80% of the fiber core diameter. Over short distances, an overfilled fiber has more output power; however, over long distances (>10 - 20 m) the higher-order modes that more susceptible to attenuation will disappear. 

Posted Comments:
No Comments Posted

Optogenetics Selection Guide

Thorlabs offers a wide range of optogenetics components; the compatibility of these products in select standard configurations is discussed in detail here. Please contact Technical Support for assistance with items outside the scope of this guide, including custom fiber components for optogenetics.


Single-Site Stimulation

One Light Source to One Cannula Implant

The most straightforward method for in vivo light stimulation of a specimen is to use a single fiber optic with a single LED light source. The single wavelength LED is powered by an LED driver, and then the illumination output is fiber-coupled into a patch cable, which connects to the implanted cannula. See the graphics and expandable compatibility tables below for the necessary patch cables and cannulae to create this setup. To choose the appropriate LED and driver, see below or the full web presentation.

Click on Each Component for More Information

LED DriverLED DriverFiber-Coupled LEDFiber-Coupled LEDSMA to Ferrule Patch Cable with Optional Rotary JointSMA to Ferrule Patch Cable with Optional Rotary JointADAF2 InterconnectADAF2 InterconnectFiber Optic CannulaFiber Optic Cannula


Multilateral Stimulation

The ability to accurately and simultaneously direct light to multiple locations within a specimen is desired for many types of optogenetics experiments. For example, bilateral stimulation techniques typically target neurons in two spatially separated regions in order to induce a desired behavior. In more complex experiments involving the simultaneous inhibition and stimulation of neurons, delivering light of two different monochromatic wavelengths within close proximity enables the user to perform these experiments without implanting multiple cannulae, which can increase stress on the specimen.

Multilateral stimulation can be achieved with several different configurations depending on the application requirements. The sections below illustrate examples of different configurations using Thorlabs' optogenetics products.

Option 1: One Light Source to Two Cannula Implants Using Rotary Joint Splitter

Thorlabs' RJ2 1x2 Rotary Joint Splitter is designed for optogenetics applications and is used to split light from a single input evenly between two outputs. The rotary joint interface allows connected patch cables to freely rotate, reducing the risk of fiber damage caused by a moving specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

LED DriverFiber-Coupled LEDHybrid Patch Cable1x2 Rotary Joint SplitterOG Patch CableOG Patch CableADAF2 InterconnectADAF2 InterconnectFiber Optic CannulaFiber Optic CannulaFiber Optic Cannula

Option 2: One or Two Light Sources to Two Cannula Implants

If the intent is for one LED source to connect to two cannulae for simultaneous light modulation, then a bifurcated fiber bundle can be used to split the light from the LED into each respective cannula. For dual wavelength stimulation (mixing two wavelengths in a single cannula) or a more controlled split ratio between cannula, one can use a multimode coupler to connect one or two LEDs to the cannulae. If one cable end is left unused, the spare coupler cable end may be terminated by a light trap. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

Click on Each Component Below for More Information

LED DriverLED DriverFiber-Coupled LEDFiber-Coupled LEDPatch CabletextY-CableMating SleeveMating SleeveMating SleeveMating SleeveFiber Optic CannulaFiber Optic CannulaFiber Optic CannulaFiber Optic Cannula

LED Driver2nd LED DriverLED Driver textFiber-Coupled LED2nd Fiber-Coupled LEDFiber-Coupled LED textMultimode CouplerMultimode Coupler TextADAF2 InterconnectADAF2 Interconnect TextADAF2 InterconnectADAF2 Interconnect TextFiber Optic CannulaFiber Optic CannulaFiber Optic CannulaFiber Optic Cannula

Option 3: One Light Sources to Seven Cannula Implants

If the intent is for one LED source to connect to seven cannulae for simultaneous light modulation, then a 1-to-7 fiber bundle can be used to split the light from the LED into each respective cannula. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

Click on Each Component Below for More Information

 LED Driver


Two Light Sources into One Dual-Core Cannula Implant

For bilateral stimulation applications where the two cannulas need to be placed in close proximity (within ~1 mm), Thorlabs offers dual-core patch cables and cannulae that are designed for this specific application. Each core is driven by a separate light source, enabling users to stimulate and/or supress nerve cells in the same region of the specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

LED Driver2nd LED DriverLED Driver TextFiber-Coupled LED2nd Fiber-Coupled LEDFiber-Coupled LEDsDual-Core Patch CableDual-Core Patch CableADAF2 InterconnectADAF2 InterconnectFiber Optic CannulaFiber Optic Cannula

Click on Each Component for More Information

Part Selection Table (Click Links for Item Description Popup)
Common Fiber Properties
Core Diameter 200 µm
Wavelength Range 400 - 2200 nm
NA 0.39
Fiber Type FT200EMT
Ferrule Stylea FC (Ø2.5 mm)
Dual-Core Patch Cable FC/PC Input BFY32FL1
SMA905 Input BFY32SL1
Compatible Mating Sleeve/Interconnect ADAF1
Dual-Core Fiber Optic Cannulaec Stainless Steel CFM32L10
  • FC components have a Ø2.5 mm ferrule end.
  • Patch cables for dual light source to single implant applications are highlighted in green above. Choose a patch cable with an input that matches your light source.
  • Available cannulae are highlighted in orange of the table above. Cannule within the same column are interchangeable.


LED Item # Wavelengtha Typical Opsin Output Powerb Color
M385F1c 385 nm EBFP, moxBFP 10.7 mW UV
M405F3c 405 nm mmilCFP, hcriGFP 3.7 mW UV
M430F1 430 nm ChR2 7.5 mW Violet
M455F3 455 nm ChIEF, bPAC 24.5 mW Royal Blue
M470F4 470 nm ChR2, ChR2-SFO 20 mW Blue
M490F4 490 nm Rh-CT, ChR2 (E123A) 2.8 mW Blue
M505F3 505 nm ChRGR, Opto-α1AR, Opto-β2AR 11.7 mW Cyan
M530F3 530 nm C1V1, VChR1 9.6 mW Green
M565F3 565 nm Arch, VChR1-SFO 13.5 mW Lime
M595F2 595 nm ChR2-SFO, eNpHR3.0 11.5 mW Amber
M625F2 625 nm ReChR 17.5 mW Red
  • Click the link for a spectrum and raw data.
  • Typical output power measured with a Ø400 µm Core, 0.39 NA multimode fiber.
  • Precautions must be taken to prevent looking directly at the UV light and UV light protective glasses must be worn to avoid eye damage. Exposure of the skin and other body parts to UV light should be avoided.


Fiber-Coupled LEDs and Drivers

Our fiber-coupled LEDs are ideal light sources for optogenetics applications. They feature a variety of wavelength choices and a convenient interconnection to optogenetics patch cables. Thorlabs offers fiber-coupled LEDs with nominal wavelengths ranging from 280 nm to 1050 nm. See the table to the right for the LEDs with the most popular wavelengths for optogenetics. A table of compatible LED drivers can be viewed by clicking below.

Back to Top

1x2 Rotary Joint Splitter

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
RJ2 Support Documentation
RJ2Customer Inspired! 1x2 Rotary Joint Splitter, 400 - 700 nm, 50:50 Split