Laser Diodes: Ø3.8 mm, TO-46, Ø5.6 mm, Ø9 mm, and Ø9.5 mm TO Cans


  • Ø3.8 mm, TO-46, Ø5.6 mm, Ø9 mm, and Ø9.5 mm Laser Diodes
  • Center Wavelengths Ranging from 375 nm to 4.60 µm
  • Output Powers from 0.2 mW to 2 W

Ø3.8 mm

Ø9 mm

Ø5.6 mm

Application Idea

Our Laser Diode Driver Kits Include an
LD Controller, TEC Controller,
LD/TEC Mount, and Accessories

Ø9.5 mm

(DPSS Laser)

Ø9 mm

(High Heat Load)

TO-46

(VCSEL Diode)

Related Items


Please Wait
Laser Diode Selection Guidea
Shop by Package / Type
TO Can (Ø3.8, TO-46, Ø5.6, Ø9, and Ø9.5 mm)
TO Can Pigtail, Collimator Output (SM)
TO Can Pigtail (SM)
TO Can Pigtail (PM)
TO Can Pigtail (MM)
Fabry-Perot Butterfly Package
FBG-Stabilized Butterfly Package
VHG-Stabilized Butterfly Package (MM)
MIR Fabry-Perot QCL and ICL, TO Can
MIR Fabry-Perot QCL, Two-Tab C-Mount
MIR Fabry-Perot QCL, D-Mount
MIR Fabry-Perot QCL, High Heat Load
Chip on Submount
Single-Frequency Lasers
DFB TO Can Pigtail
DFB Butterfly Package
VHG-Stabilized TO Can
VHG-Stabilized TO Can Pigtail (SM)
VHG-Stabilized Butterfly Package
ECL Butterfly Package
DBR Butterfly Package
ULN Hybrid Extended Butterfly Package
MIR DFB QCL, Two-Tab C-Mount
MIR DFB QCL, D-Mount
MIR DFB QCL and ICL, High Heat Load
Shop By Wavelength
  • Our complete selection of laser diodes is available on the LD Selection Guide tab above.
Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.

Features

  • Fabry-Perot (FP), Distributed Feedback (DFB), Volume Holographic Grating (VHG), Diode-Pumped Solid-State (DPSS), Quantum Cascade (QCL), Interband Cascade (ICL), and Vertical-Cavity Surface-Emitting Laser (VCSEL) Diodes
  • Output Powers from 0.2 mW to 2 W
  • Center Wavelengths Available from 375 nm to 9.5 µm
  • Easily Choose a Compatible Mount Using Our LD Pin Codes
  • Compatible with Thorlabs' Laser Diode and TEC Controllers

TO-packaged laser diodes are available in standard Ø3.8 mm, Ø5.6 mm, or Ø9 mm TO cans, as well as TO-46 or Ø9.5 mm cans. We have categorized the pin configurations into standard A, B, C, D, E, F, G, and H pin codes (see the diagram below). This pin code allows the user to easily determine compatible mounts.

Some of our diodes that are offered in header packages can be converted to a sealed TO can package by request, as indicated in the tables below. Please contact Tech Support for details.

Post-Mounted Laser Diode
Click to Enlarge

Ø9 mm TO-Can Laser Diode Secured in Post-Mounted LM9F Holder

Notes on Center Wavelength
While the center wavelength is listed for each diode, this is only a typical number. The center wavelength of a particular diode varies from production run to production run. Thus, the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. For many of these items, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics. For products listed as Wavelength Tested that do not have the "Choose Item" option, please contact Tech Support with inquires about specific wavelengths.

Laser Mode and Linewidth
We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single transverse mode (single mode, or SM) and a few are designed for higher-power, multiple-transverse-mode (multimode, or MM) operation. Our wavelength stabilized VHG laser diodes, sold below, have excellent single mode performance. Some single mode laser diodes can be operated with limited single-longitudinal-mode characteristics (see tables below for additional information). For better side mode suppression ratio (SMSR) performance, consider devices such as DFB lasers, VHG-stabilized lasers, DBR lasers, or external cavity lasers. Thorlabs single-frequency lasers are highlighted in green in the tables below; in particular, our VHG-stabilized, DFB, DBR, and external cavity lasers have very narrow linewidths (≤20 MHz for the VHG-stabilized and DFB lasers and <100 kHz for the DBR and ECL lasers). Please see our Laser Diode Tutorial for more information on these topics and laser diodes in general.

Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device (see our electrostatic shock accessories). Laser diodes are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application. See our optical isolators for potential solutions to this problem. Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.

Pin Codes

Pin Codes A through G
Laser Diode pin codes indicate which mounts and diodes are compatible. The drawings do not represent exact wiring diagrams.
Contact Thorlabs
Laser Diode Tutorial
Pin Code Monitor Photodiode Pin Code Monitor Photodiode
A Yes E No
B Yes F Yes
C Yes G No
D Yes H No
For warranty information for laser diodes, please refer to the LD Operation tab.

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and are therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application. The second example below is an extension of the procedure, which will show how to circularize an elliptical beam.

Example 1: Collimating a Diverging Beam

  • Laser Diode to be Used: L780P010
  • Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 8° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an anamorphic prism pair, which magnifies one axis of your beam; for details, see Example 2 below.

Assuming that the thickness of the lens is small compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:

laser diode collimation drawing focal length calculation
Θ = Divergence Angle Ø = Beam Diameter f = Focal Length r = Collimated Beam Radius = Ø/2

Note that the focal length is generally not equal to the needed distance between the light source and the lens.

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.

Example 2: Circularizing an Elliptical Beam

Using the laser diode and aspheric lens chosen above, we can use an anamorphic prism pair to convert our collimated, elliptical beam into a circular beam.

Prism Ray Diagram

Whereas earlier we considered only the larger divergence angle, we now look at the smaller beam divergence of 8°. From this, and using the effective focal length of the A390-B aspheric lens chosen in Example 1, we can determine the length of the semi-minor axis of the elliptical beam after collimation:

r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm

The minor beam diameter is double the semi-minor axis, or 0.64 mm. In order to magnify the minor diameter to be equal to the major diameter of 2.5 mm, we will need an anamorphic prism pair that yields a magnification of 3.9. Thorlabs offers both mounted and unmounted prism pairs. Mounted prism pairs provide the benefit of a stable housing to preserve alignment, while unmounted prism pairs can be positioned at any angle to achieve the exact desired magnification. 

The PS883-B mounted prism pair provides a magnification of 4.0 for a 950 nm wavelength beam. Because shorter wavelengths undergo greater magnification when passing through the prism pair, we can expect our 780 nm beam to be magnified by slightly more than 4.0X. Thus, the beam will still maintain a small degree of ellipticity.

Alternatively, we can use the PS871-B unmounted prism pair to achieve the precise magnification of the minor diameter necessary to produce a circular beam. Using the data available here, we see that the PS871-B achieves a magnification of 4.0 when the prisms are positioned at the following angles for a 670 nm wavelength beam:

α1: +34.608° α2: -1.2455°

Refer to the diagram to the right for α1 and α2 definitions. Our 780 nm laser will experience slightly less magnification than a 670 nm beam passing through the prisms at these angles. Some trial and error may be required to achieve the exact desired magnification. In general: 

  • To increase magnification, rotate the first prism clockwise (increasing α1) and rotate the second prism counterclockwise (decreasing α2).
  • To reduce magnification, rotate the first prism counterclockwise (decreasing α1) and rotate the second prism clockwise (increasing α2).
Remember that the prism pair introduces a linear offset between the input and output beams which increases with greater magnification.

Video Insight: Setting Up a TO Can Laser Diode

Installing a TO can laser diode in a mount and setting it up to run under temperature and current control presents many opportunities to make a mistake that could damage or destroy the laser. This step-by-step guide includes tips for keeping humans and laser diodes safe from harm.

 

When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser diodes are among the most static-sensitive devices currently made and proper ESD protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been opened. Laser diodes in their original sealed package can be returned for a full refund or credit.

Handling and Storage Precautions

Because of their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes.

Wrist Straps
Use grounded anti-static wrist straps whenever handling diodes.

Anti-Static Mats
Always work on grounded anti-static mats.

Laser Diode Storage
When not in use, short the leads of the laser together to protect against ESD damage.

Operating and Safety Precautions

Use an Appropriate Driver
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current-limiting resistor since it does not provide sufficient regulation to protect the laser diode.

Power Meters
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser diode output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.

Reflections
Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode, giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant-power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.

Heat Sinks
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser diode in a suitable heat sink to remove excess heat from the laser package.

Voltage and Current Overdrive
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.

ESD-Sensitive Device
Laser diodes are susceptible to ESD damage even during operation. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser diode or its mounting apparatus to ESD at all times.

ON/OFF and Power-Supply-Coupled Transients
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High-current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients, and thus surge-protected outlets should always be used when working with laser diodes.

If you have any questions regarding laser diodes, please contact Thorlabs Technical Support for assistance.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
  • Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign.  Warning Symbol

Posted Comments:
YOUNGIN YU  (posted 2024-08-14 19:10:30.76)
Quantity: 1 piece 1. Is it possible to ship to South Korea? 2. If so, how long does it take to ship? 3. What is the payment method? 4. Do I need to enter my personal customs code when ordering?
cdolbashian  (posted 2024-08-26 09:03:14.0)
Thank you for reaching out to us with this inquiry. We do have a distributor in South Korea, Jinsung Instruments. Our international distributors can be found on our website here (https://www.thorlabs.com/distributors.cfm). I have reached out to you directly to share their contact information, as well as address some of your other concerns.
JINSEO PARK  (posted 2024-08-06 15:07:26.323)
Dear Thorlabs, Hi, I'm Jinseo Park working on the Yonsei Univ. Lab. I'm writing the mail to give your technical support for L650P007. I'm doing the experiment with it, and I need 'Beam profile' of this LD. I thought it would have gaussian profile, but it has double peaks. I'm using EK1101/EK1102 driver purchased on Thorlabs. If I should contact another route, please let me know. Thank you, Jinseo Park
cdolbashian  (posted 2024-08-14 11:07:53.0)
Thank you for reaching out to us with this inquiry. The beam profile should certainly be single peaked Gaussian mode. I have contacted you directly to understand, more clearly, your implementation.
user  (posted 2024-05-06 19:04:48.3)
您好,我们想购买贵公司的L780P010的激光二极管制作776nm的激光器,目前对你们的产品有一些疑惑。 1、它是通过什么方式来调谐波长的(温度、工作电流或其他?) 2、它能用于制作外腔式半导体激光器中的LD吗? 以上就是我对疑惑,希望能得到你们的回复。谢谢!
cdolbashian  (posted 2024-05-24 10:31:29.0)
Thank you for reaching out to us with these inquiries. Roughly translated your inquiries are as follows.1. How does it tune the wavelength (temperature, operating current or other?) 2. Can it be used to make LDs in external cavity semiconductor lasers? The temperature tunability of this component is not exact, but can be found to approximately follow the rule of 0.20-0.25nm/°C. Regarding your second question, this is not a gain chip, so I do not think this could be used as you are indicating. We have contacted you directly to discuss your application and intents further.
Jay Lin  (posted 2023-12-25 18:09:52.63)
I bought L840P200 few months ago and I would like to know if the coating of the laser mirror in the cavity has some kind of narrow band coating or not? Typically the regular multi longitudinal mode laser diode has wider spectral linewidth, but these products has the linewidth of around 60MHz, so I think the cavity mirror is not regular low reflectivity mirror.
jpolaris  (posted 2024-01-02 05:02:35.0)
Thank you for contacting Thorlabs. Unfortunately, design details such as the presence of any narrowband coatings and cavity mirror reflectivity/ finesse are considered proprietary. I have reached out to you directly to discuss this topic further.
lijiong shen  (posted 2023-07-07 17:38:48.27)
I saw many opnext laser diodes written as single frequency for example HL6501MG, is it real Single longitudinal mode laser and what is the linewidth?
cdolbashian  (posted 2023-07-14 04:35:11.0)
Thank you for reaching out to us with this inquiry. Indeed this is both a single longitudinal mode and single transverse mode. We are planning to make this information a bit more explicit on the page in the near future. I have contacted you directly to discuss this.
Brady Paradis  (posted 2023-03-14 14:33:54.35)
Hi, Do you have recommended replacements or an ability to purchase some of these even though they are obsolete? Thanks, Brady
jdelia  (posted 2023-03-16 08:25:22.0)
Thank you for contacting Thorlabs. I have reached out to you directly regarding the feasibility of ordering the L405P150 diode.
Matthew Bissen  (posted 2023-03-02 21:01:20.38)
Hello Thorlabs, I'm from a company in the Bay Area called Adventurous Sports. We're working on an online class package for kids 10+. It's a lazermaze at home project where the kids get to assemble their own laser and make an obstacle course around their home. We're looking to combine the following products and I was curious how much it would cost for Thorlabs to do it: 5m@ Laser Diode Red 3 Volt with De Anza plug, with an longer tougher plug to fit into a breadboard. Do you think you would be able to do anything like that? Operations Manager, Matthew Bissen
ksosnowski  (posted 2023-03-08 02:32:21.0)
Hello Matthew, thanks for reaching out to Thorlabs. For this type of project I would suggest checking out our compact laser series like CPS635, PL202, and PL204. The CPS series uses a 2.5 mm phono-jack plug, and the PL series comes with a USB connector for power or with bare-wire leads options if you want to connect to your own power supply. These lasers come pre-collimated as well, while our bare laser diodes require additional lenses to create a parallel beam of output rays. We do not have any special plug options on the lasers, however are 2.5mm receptables commonly available and you can add some a breakout board, or the bare-wire option would allow any connector to be used. As lasers are sensitive to polarity, I would recommend using a polarized plug to avoid accidentally attaching the laser in reverse which can lead to damage. I have reached out directly to discuss this application further.
user  (posted 2022-11-02 10:31:04.38)
Dear Sir/Madam! We recently have purchased a HL6358MG TO Can 5.6 mm laser diode from you. We have a question about cleaning of the protecting glass of the laser diode module: which material is made from? Could you provide us a suggestion about the proper cleaning process (e. g. could we clean the glass with alcohol)? If alcohol must be not used, what is the recommended material/method? Thank you very much for advance! Attila Andrásik Semilab Zrt
cdolbashian  (posted 2022-11-08 01:56:43.0)
Thank you for reaching out to us Attila. These diodes are from a vendor, and they do not share the window material with us. That being said, these diodes are ideally hermetically sealed, so they should be sealed against air and any solvent used on the surface. We would recommend using a similar cleaning procedure as cleaning a standard optic via our guide here:https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9025
Samuel Gebretsadkan  (posted 2022-08-28 00:27:05.9)
Is this diode AR coated? I couldn't find any information in the datasheet.
cdolbashian  (posted 2022-09-16 09:50:23.0)
Thank you for reaching out to us! The facet is likely AR-coated, but not less than <1% reflectivity. If you intend to use this to build an external cavity laser, this is not designed to be used as an external gain chip. The window itself is certainly AR-coated, likely <0.25%. I have reached out to you directly to discuss this further.
Marija Ćurčić  (posted 2022-06-30 11:05:01.94)
Dear Sir/Madam, Could you please give me an information on whether the orientation of a laser diode is in any way related to the light polarization? Is the orientation of a pin on a bottom of a housing important for the output polarization? Thank you in advance. Best regards, Marija Curcic Institute of Physics Belgrade, Serbia
jdelia  (posted 2022-08-02 02:33:56.0)
Thank you for contacting Thorlabs. The polarization direction will be along the long side of the chip. The long edge is nominally aligned to the 45 degree identification tab on the TO-can. However, this is a manual process so that alignment is not controlled and, therefore, we do not specify a tolerance for the alignment of the polarization axis.
user  (posted 2022-05-09 07:04:04.493)
Hi, I have bought a M9-808-0150 diode to be used with the driver LD1255R. With a first test we obtained a power of 150 mW, but in a second test the power did not go higher than 10 mW, using a current close to the diode limit (200 mA). We do not know the cause of this malfunction. You could guide us with a solution or identifying the fault. Thanks a lot.
cdolbashian  (posted 2022-05-27 12:38:17.0)
Thank you for reaching out to us. Based on our conversations, it seems like the device was potentially damaged due to insufficient cooling. I have reached out to you directly to discuss strategies to lengthen the lifetime of your active optical instrumentation. For future troubleshooting inquiries, please contact Techsupport@thorlabs.com.
maomao zeng  (posted 2022-02-11 11:34:31.55)
Beam Deviation Angle 和 Beam Divergence两项参数的具体意义和区别是什么呢?
user  (posted 2021-12-25 04:38:58.63)
this diode using agfa aventra imgesetter 44
cdolbashian  (posted 2021-12-28 01:51:26.0)
Thank you for reaching out to us with your laser diode inquiry. I have reached out to you directly to discuss your application.
Narae Bae  (posted 2021-10-18 14:38:00.27)
1064 nm Fabry-Perot Laser Diode, 200 mW I want to know the graph (the ouput power of input current) X: input current(mA) Y: output power(mW)
YLohia  (posted 2021-12-22 02:56:11.0)
Thank you for contacting Thorlabs. I have reached out to you with an LIV curve of the M9-A64-0200. This data can be requested by emailing techsupport@thorlabs.com.
Edmond Wilson  (posted 2021-10-16 14:54:15.74)
I have 6 of these diode lasers and I use them for my Raman Spectrometer that I built. I am very happy with the laser and it exceeded my expectations because it produces 130 mW of optical power. Of course, I could use a more powerful laser. But in order to get a single mode diode laser that was more powerful. it would be much more expensive.
YLohia  (posted 2021-12-22 02:56:09.0)
Hello, thank you for your feedback on this laser. We're quite happy to hear that it has exceeded your expectations. We will consider your comments about what an ideal laser for your application be as we release more laser diodes in the future.
user  (posted 2021-09-28 12:07:54.403)
Dear Sir/Madam, I have bought a LD785-SH300 diode from your company, but somehow I lost the spec of it. The serial number is 785P300CK34.D04. Could you please offer me the specifications, like the center wavelength, wavelength VS temperature and so on? Thanks a lot!
YLohia  (posted 2021-10-11 02:51:05.0)
Hello, thank you for contacting Thorlabs. The serialized spec sheet for LD785-SH300 (S/N 785P300CK34.D04) can be accessed here: https://www.thorlabs.com/Thorcat/SerialNumbers/LD785-SH300/LD785-SH300-785P300CK34.D04_FT.pdf.
TATING TSAO  (posted 2021-07-23 16:54:16.777)
ML620G40 spec中說明符合IEC 60825-1,請問有通過此證明的電子檔可以提供?
YLohia  (posted 2021-07-26 11:18:48.0)
Hello, the IEC 60825-1 requirements documentation can be accessed here on IEC's official website: https://webstore.iec.ch/publication/3587
Alvin KANG  (posted 2021-07-22 17:44:17.613)
Hi, We would like to check whether this combination of things can work properly: 1. L450P1600MM 2. S7060R 3. SR9F (or SR9HF?) Thanks.
YLohia  (posted 2021-07-29 02:12:07.0)
Hello, thank you for contacting Thorlabs. We strongly discourage using the L450P1600MM with S7060R and SR9HF (HF because of the high compliance voltage requirement of this laser) because of the significantly reduced lifetime and output power due to lack of active cooling when using with this cable and/or socket. Instead, we suggest using the LDM56 mount with a temperature controller (TED200C).
Yu-Pu LIN  (posted 2021-05-18 02:52:06.63)
Dear Sirs, Do you have an idea of the rise/fall time of your 1370nm laser ? (L1370G1) Thank you very much! Best regards, Yu-Pu LIN
YLohia  (posted 2021-05-19 01:34:32.0)
Hello Yu-Pu, I have reached out to you directly regarding this.
I-Yun Chen  (posted 2021-03-11 13:04:29.437)
Hello. We used L520P50, but we want to automatically drive its operating current back and forth to achieve different power. Is this possible for L520P50? Or do you have any recommendation?
YLohia  (posted 2021-03-12 03:39:10.0)
Hello, are you asking if it is possible to operate the L520P50 in a constant power mode at various set power levels? If so, the answer is yes, but will ultimately depend on the specs of your current driver. For example, our LDC205C driver can support such a mode. Please see page 15 of the manual: https://www.thorlabs.com/_sd.cfm?fileName=15988-D02.pdf&partNumber=LDC205C
I-Yun Chen  (posted 2021-01-19 03:53:22.743)
Hello. We used DL5146-101S as a light source in our experiment. However, we have observed that after operating for 3 hours, the power of the laser seems to be drifting(the power becomes larger and larger). I wonder if there is any solution to this problem. Thanks a lot.
YLohia  (posted 2021-01-19 03:23:50.0)
Hello, how much is the power drifting over time? Usually, such effects can be attributed to the lack of active cooling and/or improper heat-sinking. I have reached out to you directly to troubleshoot further.
Josefine Lemke  (posted 2020-10-22 06:39:12.87)
L785 SH300 - what is the recommended operating temperature? In the spec sheet it is "20 - 50°C" but there is one small additional note that says T_CHIP=25°C. What is T_CHIP? Thank you, Josefine
YLohia  (posted 2020-10-22 01:46:55.0)
Hello Josefine, thank you for contacting Thorlabs. T_Chip is the temperature of the laser diode chip (not case). All specs are taken at a chip temperature of 25 C. This can be considered the "recommended" operating temperature for most applications. Some applications may require slight differences in the output spectrum, which can be tuned by changing the temperature of the chip. For example, the temperature tuning coefficient of the LD785-SH300 is on the order of 0.20-0.25 nm/C.
michael lee  (posted 2020-09-10 13:12:20.473)
L405P150 - 405 nm, 150 mW is a laser we want to try in our CBRNE instrument, but we need a different form factor. We are looking for 5.6mm - B package. Is this something you can do for us, without costing too much?
YLohia  (posted 2020-09-11 09:05:33.0)
Thank you for contacting Thorlabs. We offer the DL5146-101S 405 nm laser diode in a 5.6 mm package. I have reached out to you directly to discuss the possibility of getting a custom laser.
Mark Frederick  (posted 2020-09-08 20:42:37.227)
What is the window thickness of the L638P200?
YLohia  (posted 2020-09-09 11:18:57.0)
Thank you for contacting Thorlabs. The window thickness for the L638P200 is ~0.25 mm.
mohiniv. sontakke  (posted 2020-07-30 04:44:26.697)
Actually, I really wanted to know it's side-effects! Specifically, is it harmful for human? What's the time one can stay expose to certain laser! Is it harmful, do answer my queries! Eagerly waiting for your reply😊
YLohia  (posted 2020-07-30 03:37:05.0)
Hello, thank you for contacting Thorlabs. We suggest contacting your local Laser Safety Officer (LSO) for accurate information regarding laser safety and human health.
David Lowndes  (posted 2020-06-11 07:30:49.667)
Could you please advise the materials of the TO56 packages?
YLohia  (posted 2020-06-16 08:22:05.0)
Thank you for contacting Thorlabs. We have reached out to you directly to discuss this.
Warren Massey  (posted 2020-01-08 13:15:34.467)
Have you got anything like (package, wavelength, power) an L637P5 but with pin code "G"? In our application we cannot tolerate the connection of the circuit to the case of the diode.
YLohia  (posted 2020-01-08 02:07:22.0)
Thank you for contacting Thorlabs. We offer the HL63133DG, which has a 170 mW typical output power, G pin code, and 5.6 mm package.
Juwan Kim  (posted 2020-01-07 00:24:10.747)
Do you have any products with specially enhanced temperature characteristics? I'm looking for a product that meets the specifications below. 1. Visible LD: 50 mw or higher, CW, temperature -40 to 50 2. Infrared LD: 200 mW or higher, CW, temperature -40 to 50
YLohia  (posted 2020-01-07 11:37:55.0)
Thank you for contacting Thorlabs. I have reached out to you directly to discuss possible solutions.
Channarong Asavathongkul  (posted 2019-11-18 02:36:04.657)
L462P1400MM has been discontinued, what is the replacement product?
YLohia  (posted 2019-11-18 11:12:58.0)
Thank you for contacting Thorlabs. The closest alternative to this item is the L450P1600MM.
Steve Russell  (posted 2019-11-15 14:08:06.383)
Can you tell me what the electrical frequency response of this particular laser diode is? I never see this spec in any laser spec sheet of any type.
YLohia  (posted 2019-11-20 11:19:56.0)
Hello, thank you for contacting Thorlabs. Unfortunately, we do not measure this parameter and it is hard to guarantee a certain level of performance as it varies between different pieces. Each diode would have to be individually tested in order to provide an accurate representation of the frequency response. That being said, we expect that the L850P010 can be modulated >100 MHz with the proper drive electronics.
Ana R  (posted 2019-10-18 17:51:38.667)
Hi, I have an L785H1 diode that I'm setting up as part of an ECDL. The specifications state that the threshold current should be around 50 mA, but I'm getting just above 25 mA free-running. Is this something to be concerned about?
YLohia  (posted 2019-10-18 02:49:38.0)
Hello, thank you for contacting Thorlabs. A lower threshold current is not a cause for concern. We specify the typical threshold current to be 50 mA, but we do not specify a lower bound as this can vary and is not seen as a defect.
user  (posted 2019-10-17 09:26:55.633)
Hello, do you provide tolerance data regarding the positioning (x y z & tilt) of these TO-46, TO-56, TO-90 packages ? What should be the most reliable reference surface ? (package cylinder diameter, cylinder front face, support back or front plane ?)
YLohia  (posted 2019-10-17 11:16:56.0)
Hello, we do not provide this tolerance data as some of the laser diodes on this page are sourced from other manufacturers (these diodes have original manufacturer spec sheets on this page) and these tolerances are not consistent. I will reach out to you directly to discuss your requirements further.
user  (posted 2019-07-23 04:04:08.233)
What is the lifetime characteristics of laser diode L520G1, particularly MTBF?
YLohia  (posted 2019-08-07 10:00:19.0)
Hello, thank you for contacting Thorlabs. I have reached out to you directly with this information.
user  (posted 2019-06-24 03:51:37.793)
Is it possible to order a HL6312G diode with a lasing wavelength known more accurately than the 625 - 640 nm range given by the data sheet ?
YLohia  (posted 2019-06-24 09:39:17.0)
Hello, thank you for contacting Thorlabs. Unfortunately, these laser diodes are not tested individually for wavelength. You can, however, purchase one of the LPS-635-FC pigtailed diodes, which are individually tested for wavelength and power.
PHANI PEDDIBHOTLA  (posted 2019-06-10 10:28:24.897)
Hello, I bought L520P50 from Thorlabs. May I know the company which manufactures this diode? I am looking for a diode with TO56 package with a wavelength from 521-575 nm. Best Regards, Phani.
Vladimir Makarov  (posted 2019-05-30 15:28:02.717)
Hello, I am using the PL450B laser diode as a point illumination source. Could you tell me what the length and width of the emission area is? In other words, the size of the area on the facet of the laser where the light is emitted.
YLohia  (posted 2019-05-30 04:37:22.0)
Hello, the emitter width for this laser diode is 1.5um x 1.0 um.
user  (posted 2019-04-30 09:57:39.64)
Could you please suggest me a collimation tube for 3.8mm laser diodes like L405P150, PL520 or L638P150 and other 3.8mm Laser diodes? thanks in advance. ibrahim
YLohia  (posted 2019-04-30 09:29:13.0)
Hello Ibrahim, thank you for contacting Thorlabs. Unfortunately, we currently do not offer collimation tubes for 3.8mm package size laser diodes. That being said, you can build your own collimation tube with the S05LM38 adapter for 3.8mm diodes and using appropriate SM05 lens tubes and aspheric lenses.
michael.fitch  (posted 2018-11-16 16:47:18.98)
About the HL6750, when I look at the manufacturers spec sheet in the link, it appears to be pin code A. But it is listed as pin code C. Could you please check the listing?
mmcclure  (posted 2018-11-19 10:09:53.0)
Hello, thank you for your inquiry. The pin configuration for the HL6750MG laser diode corresponds to pin code C, as shown in both the manufacturer's spec sheet and the blue "info" icon on the website. Should you have additional questions, our tech support team will happily assist you.
paul.nachman  (posted 2018-07-11 12:09:32.84)
The drawings you provide in this image ... https://www.thorlabs.com/images/popupimages/HL8338MG_DWG.gif ... don't label the pin numbers in the pin diagram for comparison with the bottom view. It's lucky that you make the manufacturer's data available ... https://www.thorlabs.com/drawings/fd0e8f0902043f28-6AFA1F67-E78D-AFDC-C6C2BB53EE55033C/HL8338MG-MFGSpec.pdf ... else I would have guessed wrong.
YLohia  (posted 2018-07-12 09:57:42.0)
Hello, thank you for your feedback and bringing this issue to our attention. We are currently working on making all drawings for this item more consistent with each other.
chih.hao.li  (posted 2018-05-23 08:53:36.27)
Hi We are wondering if there is AR coating on the laser diode front window. If no, how much do you charge for an AR coated laser diode? Thank you!
YLohia  (posted 2018-05-23 05:07:46.0)
Hello, thank you for contacting Thorlabs. The windows on laser diode cans are almost always AR coated.
user  (posted 2018-03-12 15:35:01.523)
The PL450B pin connections reported in the Thorlabs selling packages and datasheets are different from the one reported in pag. 7 of the PL450B MFG Spec.
YLohia  (posted 2018-03-22 08:25:57.0)
Hello, thank you for your feedback. We took a look at this and, while they are labeled differently, the pin connections are still the same. The only thing that is different here is that the arbitrary pin numbers (Pin 1 and Pin 3) are switched in designation.
robert  (posted 2017-10-11 16:29:34.97)
It should be made clear to prospective buyers that these diodes are exceptionally sensitive to optically feedback. To quote the Thorlabs Tech Support staff "Our engineers that designed this told me that any reflection with more than 2% of the power will kill diode." That is not typical of laser diodes in this wavelength range.
tcampbell  (posted 2018-03-23 02:17:13.0)
Hello, thank you for contacting Thorlabs. After discussing with our engineers, we have added a warning for select laser diodes on this page. Please feel free to contact us if you have concerns about any other products on our site.
vg.buesaquillo  (posted 2017-06-03 13:17:19.2)
Do you can give me the spectrum of the diode laser DL5146-101S? THANKS
tfrisch  (posted 2017-06-30 01:11:14.0)
Hello, thank you for contacting Thorlabs. The spectrum will change because of differences from one production lot to another and because of differences in use, such as operating temperature and drive current. I will reach out to you directly to discuss your application.
dmitry.busko  (posted 2016-11-16 11:59:52.17)
In a datasheet for M9-940-0200 there is no any information about the LD and PD pin connections.
tfrisch  (posted 2016-11-22 08:21:01.0)
Hello, thank you for pointing out the missing circuit information. We will correct the spec sheet, but until then, if you are looking at the bottom of laser diode (pins pointing towards you), and the square cutout is down, the left pin is the Photodiode Anode, the center pin ties the Photodiode Cathode to the Laser Diode Anode and the case, and the right pin is the Laser Diode Cathode.
mitch  (posted 2016-06-18 08:50:58.713)
Hi, I would like to drive the L850P010 fast. Initially I will be using your bias-T and driver, but I plan on designing my own bias-T for 2.4GHz operation. I was wondering if you could provide details on this laser diodes approximate impedance and more importantly it's capacitance? Thanks
besembeson  (posted 2016-06-22 08:50:15.0)
Response from Bweh at Thorlabs USA: Such high speed modulation will not be suitable with this diode. You may want to consider a VCSEL instead and we don't have one for your application at this time.
pedrueze  (posted 2016-02-02 13:23:02.757)
Hi all, I have your profile current and temperature controller "Profile PRO 8000" with a combined module LD/TE controller ITC 8052. (I can send by email the pics of them.) I also have a laser diode L9805E2P5, (50 mW, 980 nm, A Pin code). The problem is that I need to choose an appropiate Temperature Controlled Laser Diode Mount for it. I was checking the TCLDM9 device. The problem is that the output of the controller is DB-15 (15 pins), and very close to it is the LD output of 9 pins. It is better understood if you can see the pics. I need to be sure which are the appropiate cables to connect between my controller and the TE mount, regarding the pin congiguration of my LD, and if they have enough space to put in the module. Could you please help me with that? Thank you very much.
besembeson  (posted 2016-02-04 10:21:59.0)
Response from Bweh at Thorlabs USA: The cables you would need will be the CAB400 for the laser control and CAB420-15 for the temperature controller. These can be found at the following page: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=966&pn=ITC8052
cmrogers  (posted 2015-12-07 21:36:29.773)
I am looking for is a diode centered near 656nm, with as a wide a gain bandwidth as possible, for use in an ECDL. What is the gain bandwidth of the relevant diodes that you sell? Also, are any of your diodes AR coated? Thanks!
besembeson  (posted 2015-12-08 10:14:54.0)
Response from Bweh at Thorlabs USA: The Fabry Perot lasers that you would need for your wavelength of interest will typically have optical bandwidth in the 5-10nm range. The high power diode lasers, for example the HL6545MG are AR coated.
pedrueze  (posted 2015-10-12 11:42:15.523)
Hello. I just recently bought one L9805E2P5 laser diode + a cable SR9A-DB9. We have a current controller whose pin diagram could be find here: http://assets.newport.com/webDocuments-EN/images/70041001_LDC-37x4C_IX.PDF (see please page 17) As you may see, doesn't match with the pins of the cable, so we must re-wired it. My concern is which pins should I re-wire. In principle, I wired 3, 5 and 9 to use the laser diode, cathode, anode and ground chassis. Is this correct/enough to make the laser emitting? should I connect the PD cathode and Anode as well? What is the use of anode/cathode voltage sense pins in the manual? Concerning the temperature, I will use the laser at low-power (for alignement). Thanks a lot for your help.
jlow  (posted 2015-10-12 04:55:23.0)
Response from Jeremy at Thorlabs: At a minimum, you will want to connect Pin2 and Pin7 on the SR9A-DB9 to your controller. If you want to use the internal photodiode for feedback, you will want to connect Pin4 as well. I will contact you directly via e-mail to help with this.
hmagh001  (posted 2015-05-08 10:53:27.903)
We just bought L808P200 for our lab and it is supposed to have a maximum power of 200 mW, and the spec. file of Laser diodes says that the threshold current is 100 mA. However, when I set the current to 80 mW from the LD controller (bought from thorlab as well, LDC220C) and measure the power with an optical power meter, it shows only 5 mW. I was wondering, how can we reach to higher power numbers with this laser diode. Thanks, Hadi.
jlow  (posted 2015-05-13 11:05:19.0)
Response from Jeremy at Thorlabs: The threshold current is the current needed for the LD to lase. To get to the 200mW power, you would need to drive this near the operating current (somewhere between 220 to 300mA for the L808P200). Please use an optical power meter to measure the output power instead of relying just on the supplied current. Also, the light from the LD is divergent so please make sure your optical power meter will capture all the light from the LD to get an accurate reading.
rssi_2nava  (posted 2014-11-24 19:25:25.74)
Hello guys, i was hoping you can tell me the amplitude reflection coefficients of the diode rear and front faces of the L1060P100J laser diode, i can't find them anywhere and i need them to compute the transmision function of the diode cavity. I'll appreciate reading from you soon Kind Regards
jlow  (posted 2014-12-11 01:30:49.0)
Response from Jeremy at Thorlabs: The coating information on the chip facet is proprietary and is not something that we can provide.
jimzambuto  (posted 2014-10-03 11:13:51.5)
For the diode part number L404P400M, what is the extent of the SLOW AAXIS. I am trying to design a collimator and the residual divergence caused by the extent of the laser facet in the slow or multimode direction is very important.
jlow  (posted 2014-10-13 09:05:41.0)
Response from Jeremy at Thorlabs: You can find the far-field emission pattern/angle on page 3 of the MFG spec sheet in the supporting documents. The direct link is http://www.thorlabs.com/thorcat/QTN/L404P400M-MFGSpec.pdf.
ar_1348  (posted 2014-04-26 15:03:07.077)
i need a driver for M5-905-0100
cdaly  (posted 2014-05-08 02:58:52.0)
Response from Chris at Thorlabs: This laser can be mounted in TCLDM9 and driven with LDC202C which can provide 200mA, covering the M5-905-0100's max operating current of 170mA. I'd suggest using a temperature controller as well, such as TED200C.
t.meinert  (posted 2014-01-08 08:36:55.39)
ask for Quotation: LD Type: DL 5146-101s Quantity: 100pcs/a 1000pcs/a
jlow  (posted 2014-01-08 10:15:34.0)
Response from Jeremy at Thorlabs: We will contact you directly to provide a quote.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW110 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW50 mA2.0 V--Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550N1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB1550PN1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16421642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1642P1642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB16461646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1646P1646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
DFB16501650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1650P1650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16541654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1654P1654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
IF3400T13.40 µm (FP)30 mW300 mA4 V40°70°Single Transverse ModeØ9 mm
ID3750HHLH3.50 - 4.00 µm (DFB)5 mW300 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QD4500HHLH4.00 - 5.00 µm (DFB)80 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5500HHLH5.00 - 6.00 µm (DFB)150 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6500HHLH6.00 - 7.00 µm (DFB)80 mW600 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

375 - 405 nm TO Can Laser Diodes

Item # Info Wavelength Powera,b Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodec
Compatible
Socket
Wavelength
Tested
Laser Mode
L375P70MLDd info 375 nm 70 mW 110 mA / 140 mA Ø5.6 mm F Yes - No Single Transverse Mode
L404P400M info 404 nm 400 mW 370 mA / 410 mA Ø5.6 mm G No S7060R No Multimode
L405P20 info 405 nm 20 mW 38 mA / 55 mA Ø5.6 mm B Yes S7060R No Single Transverse Mode
L405G2e info 405 nm 35 mW 50 mA / 75 mA Ø3.8 mm G No S038S Yes Single Transverse Mode
DL5146-101S info 405 nm 40 mW 70 mA / 100 mA Ø5.6 mm B Yes S7060R No Single Transverse Mode
L405A1 info 405 nm 175 mW
(Min)
150 mA / 200 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L405G1 info 405 nm 1000 mW 900 mA / 1200 mA Ø9 mm G No S8060 No Multimode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Typical value unless otherwise noted.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • A temperature-controlled mount such as our LDM56F(/M) is recommended for general use.
  • The L405G2 is tested to ensure a center wavelength tolerance of ±1 nm.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L375P70MLD Support Documentation
L375P70MLD375 nm, 70 mW, Ø5.6 mm, F Pin Code, Laser Diode
$5,223.29
Today
L404P400M Support Documentation
L404P400M404 nm, 400 mW, Ø5.6 mm, G Pin Code, MM Laser Diode
$753.14
Volume Pricing
Today
L405P20 Support Documentation
L405P20405 nm, 20 mW, Ø5.6 mm, B Pin Code, Laser Diode
$58.21
Volume Pricing
Today
L405G2 Support Documentation
L405G2405 nm, 35 mW, Ø3.8 mm, G Pin Code, Laser Diode
$104.93
Volume Pricing
Today
DL5146-101S Support Documentation
DL5146-101S405 nm, 40 mW, Ø5.6 mm, B Pin Code Laser Diode
$95.93
Volume Pricing
Today
L405A1 Support Documentation
L405A1405 nm, 175 mW, Ø5.6 mm, A Pin Code, Laser Diode
$805.23
Today
L405G1 Support Documentation
L405G1405 nm, 1000 mW, Ø9 mm, G Pin Code, MM Laser Diode
$780.30
Today
Back to Top

450 - 520 nm TO Can Laser Diodes

Item # Info Wavelength Powera,b Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodec
Compatible
Socket
Wavelength
Tested
Laser Mode
L450G3 info 450 nm 100 mW
(Min)
80 mA / 110 mA Ø3.8 mm G No S038S No Single Transverse Mode
L450G2 info 450 nm 100 mW
(Min)
80 mA / 110 mA Ø5.6 mm G No S7060R No Single Transverse Mode
L450P1600MM info 450 nm 1600 mW 1200 mA / 1500 mA Ø5.6 mm G No S7060R No Multimode
L473P100 info 473 nm 100 mW 120 mA / 150 mA Ø5.6 mm F+d Yes - No Single Transverse Mode
L488P60 info 488 nm 60 mW 75 mA / 110 mA Ø5.6 mm B Yes S7060R No Single Transverse Mode
L515A1 info 515 nm 10 mW 50 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L520A1 info 520 nm 30 mW
(Min)
80 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
PL520 info 520 nm 50 mW 150 mA / 160 mA Ø3.8 mm G No S038S No Single Transverse Mode
L520P50 info 520 nm 50 mW 150 mA / 160 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L520A2 info 520 nm 110 mW (Min) 225 mA / 330 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Typical value unless otherwise noted.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This laser diode has a built in Zener diode to help protect against damage from small levels of electrostatic discharge and reverse potential on the laser diode. A temperature-controlled mount such as our LDM56F(/M) or LDM90(/M) is recommended for general use.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L450G3 Support Documentation
L450G3450 nm, 100 mW, Ø3.8 mm, G Pin Code, Laser Diode
$138.57
Today
L450G2 Support Documentation
L450G2450 nm, 100 mW, Ø5.6 mm, G Pin Code, Laser Diode
$126.90
Today
L450P1600MM Support Documentation
L450P1600MM450 nm, 1600 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$94.74
Today
L473P100 Support Documentation
L473P100473 nm, 100 mW, Ø5.6 mm, F+ Pin Code, Laser Diode
$3,032.68
Today
L488P60 Support Documentation
L488P60488 nm, 60 mW, Ø5.6 mm, B Pin Code, Laser Diode
$2,793.99
Today
L515A1 Support Documentation
L515A1515 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$30.68
Volume Pricing
Today
L520A1 Support Documentation
L520A1520 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$76.29
Today
PL520 Support Documentation
PL520520 nm, 50 mW, Ø3.8 mm, G Pin Code Laser Diode
$89.69
Volume Pricing
Today
L520P50 Support Documentation
L520P50520 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$76.61
Volume Pricing
Today
L520A2 Support Documentation
L520A2520 nm, 110 mW, Ø5.6 mm, A Pin Code, Laser Diode
$155.40
Today
Back to Top

532 nm TO Can DPSS Lasers

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiode
Compatible
Socket
Wavelength
Tested
Laser Mode
DJ532-10b info 532 nm 10 mW 220 mA / 250 mA Ø9.5 mm (Non-Standard)c A Yesd - No Single Transverse Mode
DJ532-40b info 532 nm 40 mW 330 mA / 400 mA Ø9.5 mm (Non-Standard)c E No - No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Click here for more information on our 532 nm Diode Pumped Solid State Lasers.
  • These lasers have the same pin spacing as our Ø5.6 mm laser diodes. They are compatible with the LDM56 Laser Diode Mount using the LDM56DJ DPSS Laser Mounting Flange.
  • The monitor photodiode of the DJ532-10 measures the power of the pump source, not the 532 nm output. Therefore, we recommend operating these diodes in constant current mode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
DJ532-10 Support Documentation
DJ532-10532 nm, 10 mW, A Pin Code, DPSS Laser
$175.81
Today
DJ532-40 Support Documentation
DJ532-40532 nm, 40 mW, E Pin Code, DPSS Laser
$212.64
Today
Back to Top

633 - 635 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
HL63163DG info 633 nm 100 mW 170 mA / 230 mA Ø5.6 mm G No S7060R No Single Transverse Mode
L635P5 info 635 nm 5 mW 30 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6312G info 635 nm 5 mW 50 mA / 85 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
HL6320G info 635 nm 10 mW 60 mA / 95 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
HL6322G info 635 nm 15 mW 75 mA / 100 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
HL63163DG Support Documentation
HL63163DG633 nm, 100 mW, Ø5.6 mm, G Pin Code, Laser Diode
$337.37
Volume Pricing
Today
L635P5 Support Documentation
L635P5635 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.67
Volume Pricing
Today
HL6312G Support Documentation
HL6312G635 nm, 5 mW, Ø9 mm, A Pin Code, Laser Diode
$24.94
Volume Pricing
Today
HL6320G Support Documentation
HL6320G635 nm, 10 mW, Ø9 mm, A Pin Code, Laser Diode
$47.24
Volume Pricing
Today
HL6322G Support Documentation
HL6322G635 nm, 15 mW, Ø9 mm, A Pin Code, Laser Diode
$79.00
Volume Pricing
Today
Back to Top

637 - 639 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L637P5 info 637 nm 5 mW 20 mA / 25 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
HL63142DG info 637 nm 100 mW 140 mA / 180 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL63133DG info 637 nm 170 mW 250 mA / 320 mA Ø5.6 mm G No S7060R No Single Transverse Mode
HL6388MG info 637 nm 250 mW 340 mA / 430 mA Ø5.6 mm H No S7060R No Multimode
L637G1 info 637 nm 1200 mW 1100 mA / 1500 mA Ø9 mmc G No Customc No Multimode
L638P040 info 638 nm 40 mW 92 mA / 115 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L638P150 info 638 nm 150 mW 230 mA / 300 mA Ø3.8 mm G No S038S No Single Transverse Mode
L638P200 info 638 nm 200 mW 280 mA / 330 mA Ø5.6 mm G No S7060R No Single Transverse Mode
L638P700M info 638 nm 700 mW 820 mA / 1000 mA Ø5.6 mm G No S7060R No Multimode
HL6358MG info 639 nm 10 mW 40 mA / 50 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6323MG info 639 nm 30 mW 100 mA / 130 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • A socket is included to assist with soldering. The leads on this diode have a larger 0.6 mm diameter than the typical 0.45 mm diameter for a Ø9 mm package. This makes it incompatible with mounts and sockets that are designed to fit a standard Ø9 mm TO can package, such as our LDM90 mount.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L637P5 Support Documentation
L637P5Customer Inspired! 637 nm, 5 mW, Ø5.6 mm, C Pin Code, Laser Diode
$15.68
Volume Pricing
Today
HL63142DG Support Documentation
HL63142DG637 nm, 100 mW, Ø5.6 mm, A Pin Code, Laser Diode
$321.92
Volume Pricing
Today
HL63133DG Support Documentation
HL63133DG637 nm, 170 mW, Ø5.6 mm, G Pin Code, Laser Diode
$190.07
Volume Pricing
Today
HL6388MG Support Documentation
HL6388MG637 nm, 250 mW, Ø5.6 mm, H Pin Code, MM, Laser Diode
$65.93
Volume Pricing
Today
L637G1 Support Documentation
L637G1637 nm, 1200 mW, Ø9 mm, G Pin Code, MM, Laser Diode
$178.09
Volume Pricing
Today
L638P040 Support Documentation
L638P040638 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$112.85
Volume Pricing
Today
L638P150 Support Documentation
L638P150638 nm, 150 mW, Ø3.8 mm, G Pin Code, Laser Diode
$54.74
Today
L638P200 Support Documentation
L638P200638 nm, 200 mW, Ø5.6 mm, G Pin Code, Laser Diode
$153.73
Today
L638P700M Support Documentation
L638P700M638 nm, 700 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$72.17
Volume Pricing
Today
HL6358MG Support Documentation
HL6358MG639 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$17.94
Volume Pricing
Today
HL6323MG Support Documentation
HL6323MG639 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$150.87
Volume Pricing
Today
Back to Top

640 nm - 660 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
HL6362MG info 640 nm 40 mW 90 mA / 110 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6364DG info 642 nm 60 mW 120 mA / 155 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6366DG info 642 nm 80 mW 150 mA / 175 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6385DG info 642 nm 150 mW 250 mA / 350 mA Ø5.6 mm H No S7060R No Single Transverse Mode
L650P007 info 650 nm 7 mW 28 mA / 35 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6501MG info 658 nm 30 mW 75 mA / 120 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L658P040 info 658 nm 40 mW 75 mA / 110 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6544FM info 660 nm 50 mW 115 mA / 135 mA Ø5.6 mm G No S7060R No Single Transverse Mode
HL6545MG info 660 nm 120 mW 170 mA / 210 mA Ø5.6 mm H No S7060R No Single Transverse Mode
L660P120 info 660 nm 120 mW 175 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
HL6362MG Support Documentation
HL6362MG640 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$136.61
Volume Pricing
Today
HL6364DG Support Documentation
HL6364DG642 nm, 60 mW, Ø5.6 mm, A Pin Code, Laser Diode
$180.56
Volume Pricing
Today
HL6366DG Support Documentation
HL6366DG642 nm, 80 mW, Ø5.6 mm, A Pin Code, Laser Diode
$229.27
Volume Pricing
Today
HL6385DG Support Documentation
HL6385DG642 nm, 150 mW, Ø5.6 mm, H Pin Code, Laser Diode
$356.39
Volume Pricing
Today
L650P007 Support Documentation
L650P007650 nm, 7 mW, Ø5.6 mm, A Pin Code, Laser Diode
$15.08
Volume Pricing
Today
HL6501MG Support Documentation
HL6501MG658 nm, 30 mW, Ø5.6 mm, C Pin Code, Laser Diode
$28.63
Volume Pricing
3 weeks
L658P040 Support Documentation
L658P040658 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$31.77
Volume Pricing
Today
HL6544FM Support Documentation
HL6544FM660 nm, 50 mW, Ø5.6 mm, G Pin Code, Laser Diode
$38.91
Volume Pricing
Today
HL6545MG Support Documentation
HL6545MG660 nm, 120 mW, Ø5.6 mm, H Pin Code, Laser Diode
$51.09
Volume Pricing
Today
L660P120 Support Documentation
L660P120660 nm, 120 mW, Ø5.6 mm, C Pin Code, Laser Diode
$116.73
Volume Pricing
Today
Back to Top

670 nm - 730 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L670VH1 info 670 nm 1 mW 2.5 mA / 2.8 mA TO-46 H No S8060 No Single Transverse Mode
HL6748MG info 670 nm 10 mW 30 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6714G info 670 nm 10 mW 55 mA / 90 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
HL6756MG info 670 nm 15 mW 35 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
HL6750MG info 685 nm 50 mW 70 mA / 120 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
HL6738MG info 690 nm 30 mW 85 mA / 115 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
HL7001MG info 705 nm 40 mW 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
HL7302MG info 730 nm 40 mW 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L670VH1 Support Documentation
L670VH1670 nm, 1 mW, TO-46, H Pin Code, VCSEL Diode
$164.67
Today
HL6748MG Support Documentation
HL6748MG670 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$31.19
Volume Pricing
Today
HL6714G Support Documentation
HL6714G670 nm, 10 mW, Ø9 mm, A Pin Code, Laser Diode
$59.11
Volume Pricing
Today
HL6756MG Support Documentation
HL6756MG670 nm, 15 mW, Ø5.6 mm, A Pin Code, Laser Diode
$70.69
Volume Pricing
Today
HL6750MG Support Documentation
HL6750MG685 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$93.24
Volume Pricing
Today
HL6738MG Support Documentation
HL6738MG690 nm, 30 mW, Ø5.6 mm, C Pin Code, Laser Diode
$56.43
Volume Pricing
Today
HL7001MG Support Documentation
HL7001MGCustomer Inspired! 705 nm, 40 mW, Ø5.6 mm, C Pin Code, Laser Diode
$420.53
Volume Pricing
Today
HL7302MG Support Documentation
HL7302MG730 nm, 40 mW, Ø5.6 mm, A Pin Code, Diode
$420.53
Volume Pricing
Today
Back to Top

760 nm - 795 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L760VH1 info 760 nm 0.5 mW 3 mA (Max) TO-46 H No S8060 or S8060-4 No Single Frequencyc
L763VH1 info 763 nm 0.5 mW 3 mA (Max) TO-46 H No S8060 or S8060-4 No Single Frequencyc
L780P010 info 780 nm 10 mW 24 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L785P5 info 785 nm 5 mW 28 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L785P25 info 785 nm 25 mW 45 mA / 60 mA Ø5.6 mm B Yes S7060R No Single Transverse Mode
L785P090 info 785 nm 90 mW 125 mA / 165 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
LD785-SEV300d info 785 nm 300 mW 500 mA (Max)e Ø9 mmf E No S8060 or S8060-4 Yes Single Frequencyc
LD785-SH300g info 785 nm 300 mW 400 mA / 450 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
LD785-SE400g info 785 nm 400 mW 550 mA / 600 mA Ø9 mm E No S8060 or S8060-4 Yes Single Transverse Mode
L795VH1 info 795 nm 0.25 mW 1.2 mA / 1.5 mA TO-46 H No S8060 or S8060-4 No Single Frequencyc
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single Longitudinal Mode and Single Transverse Mode
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections. This volume holographic grating (VHG) laser diode is also available in an SM pigtail package with internal isolator.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for the LD785-SEV300 is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L760VH1 Support Documentation
L760VH1760 nm, 0.5 mW, TO-46, H Pin Code, VCSEL Diode
$695.64
Today
L763VH1 Support Documentation
L763VH1763 nm, 0.5 mW, TO-46, H Pin Code, VCSEL Diode
$695.64
Today
L780P010 Support Documentation
L780P010780 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.45
Volume Pricing
Today
L785P5 Support Documentation
L785P5785 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$12.93
Volume Pricing
Today
L785P25 Support Documentation
L785P25785 nm, 25 mW, Ø5.6 mm, B Pin Code, Laser Diode
$43.36
Volume Pricing
Today
L785P090 Support Documentation
L785P090785 nm, 90 mW, Ø5.6 mm, C Pin Code, Laser Diode
$50.49
Today
Choose ItemLD785-SEV300 Support Documentation
LD785-SEV300Customer Inspired! 785 nm, 300 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,640.53
Today
Choose ItemLD785-SH300 Support Documentation
LD785-SH300785 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$333.81
Volume Pricing
Today
Choose ItemLD785-SE400 Support Documentation
LD785-SE400785 nm, 400 mW, Ø9 mm, E Pin Code, Laser Diode
$424.09
Volume Pricing
Today
L795VH1 Support Documentation
L795VH1795 nm, 0.25 mW, TO-46, H Pin Code, VCSEL Diode
$164.67
Today
Back to Top

808 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
M9-808-0150 info 808 nm 150 mW 180 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L808P200 info 808 nm 200 mW 260 mA / 300 mA Ø5.6 mm A Yes S7060R No Multimode
L808H1 info 808 nm 300 mW 400 mA / 450 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
L808P500MM info 808 nm 500 mW 650 mA / 700 mA Ø5.6 mm A Yes S7060R No Multimode
LD808-SE500c info 808 nm 500 mW 750 mA / 800 mA Ø9 mmd E No S8060 or S8060-4 Yes Single Transverse Mode
LD808-SEV500e info 808 nm 500 mW 800 mA (Max)f Ø9 mmd E No S8060 or S8060-4 Yes Single Frequencyg
L808P1000MM info 808 nm 1000 mW 1100 mA / 1500 mA Ø9 mm E No S8060 or S8060-4 No Multimode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
M9-808-0150 Support Documentation
M9-808-0150808 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$536.95
Volume Pricing
Today
L808P200 Support Documentation
L808P200808 nm, 200 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$76.03
Volume Pricing
Today
L808H1 Support Documentation
L808H1808 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$329.34
Today
L808P500MM Support Documentation
L808P500MM808 nm, 500 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$44.85
Today
Choose ItemLD808-SE500 Support Documentation
LD808-SE500808 nm, 500 mW, Ø9 mm, E Pin Code, Laser Diode
$727.02
Today
Choose ItemLD808-SEV500 Support Documentation
LD808-SEV500808 nm, 500 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,761.69
Volume Pricing
Today
L808P1000MM Support Documentation
L808P1000MM808 nm, 1000 mW, Ø9 mm, E Pin Code, MM, Laser Diode
$88.51
Today
Back to Top

820 nm - 895 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L820P100 info 820 nm 100 mW 145 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L820P200 info 820 nm 200 mW 250 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
HL8338MG info 830 nm 50 mW 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L830H1 info 830 nm 250 mW 400 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
LD830-SE650c info 830 nm 650 mW 900 mA / 1050 mA Ø9 mmd E No S8060 or S8060-4 Yes Single Transverse Mode
LD830-MA1W info 830 nm 1000 mW 2000 mA (Max) Ø9 mm A Yes S8060 or S8060-4 Yes Multimode
LD830-ME2W info 830 nm 2000 mW 3 A (Max) Ø9 mmd E No S8060 or S8060-4 Yes Multimode
L840P200 info 840 nm 200 mW 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L850VH1 info 850 nm 1 mW 6 mA (Max) TO-46 H No S8060 No Single Frequencye
L850P010 info 850 nm 10 mW 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L850P030 info 850 nm 30 mW 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L852P50 info 852 nm 50 mW 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L852P100 info 852 nm 100 mW 120 mA / 170 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L852P150 info 852 nm 150 mW 170 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L852SEV1f info 852 nm 270 mW 350 mA / 400 mAg Ø9 mmd E No S8060 or S8060-4 Yes Single Frequencye
L852H1 info 852 nm 300 mW 415 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
LD852-SE600c info 852 nm 600 mW 950 mA / 1050 mA Ø9 mmd E No S8060 or S8060-4 Yes Single Transverse Mode
LD852-SEV600f info 852 nm 600 mW 1050 mA (Max)g Ø9 mmd E No S8060 or S8060-4 Yes Single Frequencye
L880P010 info 880 nm 10 mW 30 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L895VH1 info 895 nm 0.2 mW 1.4 mA / 2.0 mA TO-46 H No S8060 or S8060-4 No Single Frequencye
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • Single Longitudinal Mode and Single Transverse Mode
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L820P100 Support Documentation
L820P100820 nm, 100 mW, Ø5.6 mm, C Pin Code, Laser Diode
$49.90
Today
L820P200 Support Documentation
L820P200820 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$99.50
Today
HL8338MG Support Documentation
HL8338MG830 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$65.93
Volume Pricing
Today
L830H1 Support Documentation
L830H1830 nm, 250 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
Choose ItemLD830-SE650 Support Documentation
LD830-SE650830 nm, 650 mW, Ø9 mm, E Pin Code, Laser Diode
$424.09
Volume Pricing
Today
LD830-MA1W Support Documentation
LD830-MA1W830 nm, 1 W, Ø9 mm, A Pin Code, MM, Laser Diode
$302.92
Today
Choose ItemLD830-ME2W Support Documentation
LD830-ME2W830 nm, 2 W, Ø9 mm, E Pin Code, MM, Laser Diode
$605.84
Today
L840P200 Support Documentation
L840P200840 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$54.16
Today
L850VH1 Support Documentation
L850VH1850 nm, 1 mW, TO-46, H Pin Code, VCSEL Diode
$164.67
Today
L850P010 Support Documentation
L850P010850 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.45
Volume Pricing
Today
L850P030 Support Documentation
L850P030850 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$103.05
Volume Pricing
Today
L852P50 Support Documentation
L852P50852 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$172.25
Volume Pricing
Today
L852P100 Support Documentation
L852P100852 nm, 100 mW, Ø9 mm, A Pin Code, Laser Diode
$228.08
Volume Pricing
Today
L852P150 Support Documentation
L852P150852 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$336.19
Volume Pricing
Today
Choose ItemL852SEV1 Support Documentation
L852SEV1852 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,000.00
Today
L852H1 Support Documentation
L852H1852 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$384.22
Today
Choose ItemLD852-SE600 Support Documentation
LD852-SE600852 nm, 600 mW, Ø9 mm, E Pin Code, Laser Diode
$727.02
Volume Pricing
Today
Choose ItemLD852-SEV600 Support Documentation
LD852-SEV600852 nm, 600 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,761.69
Volume Pricing
Today
L880P010 Support Documentation
L880P010880 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$58.21
Volume Pricing
Today
L895VH1 Support Documentation
L895VH1895 nm, 0.2 mW, H Pin Code, VCSEL Diode
$164.67
Today
Back to Top

904 nm - 960 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L904P010 info 904 nm 10 mW 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
M9-940-0200 info 940 nm 200 mW 270 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L960H1 info 960 nm 250 mW 400 mA / 430 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L904P010 Support Documentation
L904P010904 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$30.28
Volume Pricing
3 weeks
M9-940-0200 Support Documentation
M9-940-0200940 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$687.81
Volume Pricing
Today
L960H1 Support Documentation
L960H1960 nm, 250 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Volume Pricing
Today
Back to Top

976 nm - 980 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L976SEV1c info 976 nm 270 mW 350 mA / 400 mAd Ø9 mme E No S8060 or S8060-4 Yes Single Frequencyf
L980P010 info 980 nm 10 mW 25 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L980P030 info 980 nm 30 mW 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L980P100A info 980 nm 100 mW 150 mA / 190 mA Ø5.6 mm A Yes S7060R No Multimode
L980H1 info 980 nm 200 mW 300 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Modeg
L980P200 info 980 nm 200 mW 300 mA / 400 mA Ø5.6 mm A Yes S7060R No Multimode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • Single Longitudinal Mode and Single Transverse Mode
  • At least 90% of the output power is within a single transverse mode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemL976SEV1 Support Documentation
L976SEV1976 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,530.00
Today
L980P010 Support Documentation
L980P010980 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$31.77
Volume Pricing
Today
L980P030 Support Documentation
L980P030980 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$78.70
Volume Pricing
Today
L980P100A Support Documentation
L980P100A980 nm, 100 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$124.73
Volume Pricing
Today
L980H1 Support Documentation
L980H1980 nm, 200 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
L980P200 Support Documentation
L980P200980 nm, 200 mW, Ø5.6 mm, A Pin Code, Laser Diode
$158.00
Volume Pricing
Today
Back to Top

1064 nm TO Can Laser Diodes

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
M9-A64-0200 info 1064 nm 200 mW 280 mA / 350 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L1064H1 info 1064 nm 300 mW 700 mA / 900 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
L1064H2 info 1064 nm 450 mW 1100 mA / 1200 mA Ø9 mm E No S8060 or S8060-4 No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
M9-A64-0200 Support Documentation
M9-A64-02001064 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$496.55
Volume Pricing
Today
L1064H1 Support Documentation
L1064H11064 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
L1064H2 Support Documentation
L1064H21064 nm, 450 mW, Ø9 mm, E Pin Code, Laser Diode
$494.00
Today
Back to Top

1270 nm - 1480 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L1270P5DFBc info 1270 nm 5 mW 15 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1290P5DFBc info 1290 nm 5 mW 16 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1310P5DFBc info 1310 nm 5 mW 16 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
ML725B8F info 1310 nm 5 mW 20 mA / 35 mA Ø5.6 mm D Yes - Yes Single Transverse Mode
FPL1053Te info 1310 nm 300 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
L1310G1 info 1310 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1330P5DFBc info 1330 nm 5 mW 14 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1370G1 info 1370 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1450G1 info 1450 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1470P5DFBc info 1470 nm 5 mW 19 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1480G1 info 1480 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode includes an integrated aspheric focusing lens in the cap, allowing for the focus spot and numerical aperture to be matched to SMF-28e+ fiber.
  • Single Longitudinal Mode and Single Transverse Mode
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L1310P5DFB Support Documentation
L1310P5DFB1310 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
+1 Qty Docs Part Number - Universal Price Available
L1270P5DFB Support Documentation
L1270P5DFBCustomer Inspired! 1270 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1290P5DFB Support Documentation
L1290P5DFB1290 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
ML725B8F Support Documentation
ML725B8F1310 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$57.61
Volume Pricing
Lead Time
FPL1053T Support Documentation
FPL1053T1310 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$424.09
Today
L1310G1 Support Documentation
L1310G11310 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$350.55
Today
L1330P5DFB Support Documentation
L1330P5DFB1330 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode With Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1370G1 Support Documentation
L1370G11370 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$378.50
Today
L1450G1 Support Documentation
L1450G11450 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$351.72
Today
L1470P5DFB Support Documentation
L1470P5DFB1470 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1480G1 Support Documentation
L1480G11480 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$354.04
Today
Back to Top

1490 nm - 1650 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L1490P5DFBc info 1490 nm 5 mW 24 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1510P5DFBc info 1510 nm 5 mW 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1530P5DFBc info 1530 nm 5 mW 21 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1550P5DFBc info 1550 nm 5 mW 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
ML925B45F info 1550 nm 5 mW 30 mA / 50 mA Ø5.6 mm D Yes - No Single Transverse Mode
FPL1055Te info 1550 nm 300 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
L1550G1 info 1550 nm 1700 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1570P5DFBc info 1570 nm 5 mW 25 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1575G1 info 1575 nm 1700 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
FPL1054Te info 1625 nm 200 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
FPL1059Te info 1650 nm 225 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode includes an integrated aspheric focusing lens in the cap, allowing for the focus spot and numerical aperture to be matched to SMF-28e+ fiber.
  • Single Longitudinal Mode and Single Transverse Mode
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L1550P5DFB Support Documentation
L1550P5DFB1550 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
+1 Qty Docs Part Number - Universal Price Available
L1490P5DFB Support Documentation
L1490P5DFB1490 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1510P5DFB Support Documentation
L1510P5DFB1510 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1530P5DFB Support Documentation
L1530P5DFB1530 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
ML925B45F Support Documentation
ML925B45F1550 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$57.61
Volume Pricing
Today
FPL1055T Support Documentation
FPL1055T1550 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$424.09
Today
L1550G1 Support Documentation
L1550G11550 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$355.20
Today
L1570P5DFB Support Documentation
L1570P5DFB1570 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1575G1 Support Documentation
L1575G11575 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$356.39
Today
FPL1054T Support Documentation
FPL1054T1625 nm, 200 mW Pulsed, Ø5.6 mm, E Pin Code
$466.86
Today
FPL1059T Support Documentation
FPL1059T1650 nm, 225 mW Pulsed, Ø5.6 mm, E Pin Code
$509.62
Today
Back to Top

3.40 µm TO Can Fabry-Perot ICL

Item # Info Center Wavelengtha Power (Min)b Max
Operating Currentb
Packagec Pin Code Monitor
Photodiode
Wavelength Tested Laser Mode
IF3400T1 info 3.40 µm (2941 cm-1) 30 mW 600 mA Ø9 mm H No Yes Single Transverse Mode
  • Fabry-Perot Lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • The Ø9 mm package for these diodes is 4.3 mm (0.17") thick, which is more than the standard 1.5 mm (0.06"). The laser will still be compatible with all Ø9 mm laser mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemIF3400T1 Support Documentation
IF3400T1NEW!Fabry-Perot Interband Cascade Laser, 3.40 μm CWL, 30 mW, Ø9 mm, H Pin Code
$4,285.00
Today
Back to Top

3.85 µm - 9.5 µm TO Can Fabry-Perot QCLs

Item # Info Center Wavelengtha Power (Min)b Max
Operating Currentb
Packagec Pin Code Monitor
Photodiode
Wavelength Tested Laser Mode
QF3850T1 info 3.85 µm (2597 cm-1) 200 mW 600 mA Ø9 mm H No Yes Single Transverse Mode
QF4050T2 info 4.05 µm (2469 cm-1) 70 mW 400 mA Ø9 mm H No Yes Single Transverse Mode
QF4050T1 info 4.05 µm (2469 cm-1) 300 mW 600 mA Ø9 mm H No Yes Single Transverse Mode
QF4600T2 info 4.60 µm (2174 cm-1) 200 mW 500 mA Ø9 mm H No Yes Single Transverse Mode
QF4600T1 info 4.60 µm (2174 cm-1) 400 mW 800 mA Ø9 mm H No Yes Single Transverse Mode
QF4600T3 info 4.60 µm (2174 cm-1) 1000 mW 800 mA Ø9 mm H No Yes Single Transverse Mode
QF9500T1 info 9.5 µm (1053 cm-1) 300 mW 800 mA Ø9 mm H No Yes Single Transverse Mode
  • Fabry-Perot Lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • Please see the blue info icons () above for absolute maximum power and current specifications. Do not exceed these values, whichever occurs first.
  • The Ø9 mm package for these diodes is 4.3 mm (0.17") thick, which is more than the standard 1.5 mm (0.06"). The laser will still be compatible with all Ø9 mm laser mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF3850T1 Support Documentation
QF3850T1Fabry-Perot Quantum Cascade Laser, 3.85 μm CWL, 200 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF4050T2 Support Documentation
QF4050T2Fabry-Perot Quantum Cascade Laser, 4.05 μm CWL, 70 mW, Ø9 mm, H Pin Code
$1,606.50
Today
Choose ItemQF4050T1 Support Documentation
QF4050T1Fabry-Perot Quantum Cascade Laser, 4.05 μm CWL, 300 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF4600T2 Support Documentation
QF4600T2Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 200 mW, Ø9 mm, H Pin Code
$1,981.35
Volume Pricing
Today
Choose ItemQF4600T1 Support Documentation
QF4600T1Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 400 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today
Choose ItemQF4600T3 Support Documentation
QF4600T3Fabry-Perot Quantum Cascade Laser, 4.60 μm CWL, 1000 mW, Ø9 mm, H Pin Code
$5,997.60
Volume Pricing
Today
Choose ItemQF9500T1 Support Documentation
QF9500T1Fabry-Perot Quantum Cascade Laser, 9.5 μm CWL, 300 mW, Ø9 mm, H Pin Code
$3,860.96
Volume Pricing
Today