Epi-Illumination for DIY Cerna® Systems


  • Modular, User-Configurable Epi-Illuminator Modules
  • Breadboard Tops for Custom Illumination
  • Exchange Fluorescence Filter Sets
    Using a Turret or Cube

WFA2001

Single-Cube Epi-Illuminator Module

OPX2400

Breadboard Top with Two-Position Slider

CSE2100

Epi-Illuminator Module with Removable Filter Turret

Application Idea

Cerna® Microscope with
CSE2100 Epi-Illuminator Turret

CSE2000W

Extra Removable Filter Turret

MDFM-MF2

Filter Cube for Single-Cube Epi-Illuminator Modules

Related Items


Please Wait
Custom Epi-Illumination Building
Click to Enlarge

Together, these components allow user-built microscopes to be constructed with a high degree of modularity.
Custom Epi-Illumination Building
Click to Enlarge

As an alternative or as a supplement to an epi-illuminator module, our breadboard tops can be used.
Custom Epi-Illumination Building
Click to Enlarge

The dovetail aligns the epi-illuminator module with the optical path of the microscope.
Custom Epi-Illumination Building
Click to Enlarge

The epi-illumination arm of the microscope body has a female D1N dovetail aligned with the 7.74" throat depth.

Features

  • Optical Ports Aligned with 7.74" Throat Depth of DIY Cerna® Systems
  • Ready-to-Use Epi-Illuminator Modules
  • One Filter Cube Slot or Removable Turret for Six Filter Sets
    • Compatible with Uncollimated or Collimated Illumination Sources
    • CSE2100 and CSE2200 Offer Additional Optical Side Port
  • DIY Epi-Illuminator Modules
    • One Filter Cube Slot or Removable Turret for Six Filter Sets
    • SM1, SM2, 30 mm Cage, and/or 60 mm Cage Compatible (See Selection Guide Below)
  • Breadboard Tops
    • 1/4"-20 (M6 x 1.0) Tapped Holes
    • OPX2400 has Two-Position Slider for Combining or Switching Between Optical Paths
  • Fluorescence Filter Cube for WFA200x Epi-Illuminator Modules
  • Extra Removable Filter Turret for CSE2xxx Epi-Illuminator Modules
  • Collimation Adapters for Liquid Light Guide (LLG) Integration
  • Dovetail Adapters for Thorlabs' Lens Tube and Cage Construction Systems

We offer several epi-illuminator modules and accessories for constructing epi-illumination pathways in DIY Cerna systems. These components are used to guide light through the objective and generate intense illumination across the field of view.

Our ready-to-use epi-illuminator modules condition incoming light to provide even illumination across the field of view at the sample plane. The WFA2001 Epi-Illuminator Module ships ready to connect to illumination sources such as Thorlabs' mounted LEDs and high-power Solis® microscopy LEDs, while the CSE2100 and CSE2200 Epi-Illuminator Modules accept collimated illumination sources that are coupled into our Ø1" lens tubes, Ø2" lens tubes via the SM2A56 dovetail adapter, and 30 mm and 60 mm cage systems. Alternatively, our DIY Epi-Illuminator Modules, Breadboard Tops, and Breadboard Top with Two-Position Slider enable completely home-built illumination setups. See the selection guide below for additional details.

We offer the MDFM-MF2 Microscopy Filter Cube for the WFA2001 and WFA2002 Epi-Illuminator Modules. For the CSE2000, CSE2100, and CSE2200 Epi-Illuminator Modules, we have designed the CSE2000W Filter Turret, which holds up to six filter sets directly without the need for separate filter cubes.

Both the filter cubes and filter turret accept Ø25 mm excitation and emission filters and 25 mm x 36 mm dichroic filters, making them compatible with filters from all major manufacturers. We also manufacture 25 mm x 36 mm plate beamsplitters for white-light imaging with epi-illumination and a 25 mm x 36 mm protected silver mirror.

Selection Guide

Item # WFA2001a WFA2002 CSE2100a CSE2200a CSE2000 CSA3000(/M) CSA3010(/M) OPX2400(/M)
Epi-Illuminator
Module Type
Ready to Use DIY Ready to Use DIY Breadboard Top Breadboard Top with Two-Position Slider
Fluorescence
Filter Set
Mounting
One Filter Cube (Not Included) Turret for Six Filter Sets (Included) N/A N/A N/A
Compatible
Illumination
Source
Uncollimated User-Constructed
Optical Pathb
Primary Path: Collimated
Additional Path: User-Constructed, Uncollimated
User-Constructed
Optical Pathb
User-Constructed Optical Pathb
Illumination Source
Mounting
SM1 Threads
Ø3 mm LLG
SM1 Threads
30 mm Cage System
D3T Dovetail
60 mm Cage System
60 mm Cage System 1/4"-20 (M6 x 1.0) Taps 1/4"-20 (M6 x 1.0) Taps
30 mm Cage System
60 mm Cage System
1/4"-20 (M6 x 1.0) Taps
SM2 Threads
60 mm Cage System
Additional Optical Port:
SM1 Threads
30 mm Cage System
  • The Optical Diagrams tab contains ray diagrams for these epi-illuminator modules.
  • These modules do not come with a preconfigured optical path to accept an illumination source. They are designed for users that want to design their own optical path.
Epi-Illuminator Schematic
Click to Enlarge

WFA2001 Ready-to-Use Epi-Illuminator Module
The WFA2001 includes a field stop, aperture stop, and optical elements that produce homogeneous illumination across the field of view. It contains one filter cube slot for holding a fluorescence filter set, a beamsplitter with crossed polarizers, or a mirror. It is designed for an uncollimated illumination source.
Epi-Illuminator Schematic
Click for Details

CSE2100 and CSE2200 Ready-to-Use Epi-Illuminator Module
In addition to a field stop and optical elements that provide homogeneous illumination across the field of view, these modules features an additional optical side port. The primary optical path is designed for a collimated illumination source and the additional optical path is designed for a focused illumination source at a distance D1 from the module body (see enlarged diagram). The working distance between the bottom of the dovetail and the back focal plane of the objective (D2 in enlarged diagram) is 50 mm for the CSE2100 and 150 mm for the CSE2200. Both the CSE2100 and CSE2000 contain a removable filter turret, providing room for up to six fluorescence filter sets, beamsplitters with crossed polarizers, or mirrors.

Please note that, unlike the WFA2001, the CSE2100 and CSE2000 use lenses not currently sold separately by Thorlabs.
CSE2100
Zemax Black Box

Cerna® microscopes support several imaging modalities, including epi-fluorescence, brightfield illumination, differential interference contrast (DIC) imaging, and Dodt gradient contrast imaging. Each of these methods requires different accessories and confers different advantages to the microscopist, as described below.

Onion Mitosis
Click to Enlarge

Epi-Fluorescence Image of Mouse Kidney with Multiple Labels

Epi-Fluorescence
Epi-fluorescence makes use of fluorescent labels and intrinsic fluorescence in a specimen to identify sample features. To create an epi-fluorescence image, light that has been passed through an excitation filter is directed through an objective and absorbed by a sample. This excitation causes fluorophores within the sample to emit light of a longer wavelength (i.e., lower energy) than the excitation light. Some of this emitted light is collected by the objective, which helps direct the emission onto a camera for observation. Additional details on this imaging modality are available here.

For performing epi-fluorescence measurements in DIY Cerna systems, we offer a range of widefield viewing and epi-illumination accessories, as well as fluorescence filter sets targeted at common fluorophores.

 

Onion Mitosis
Click for Details

Brightfield Image of Onion Mitosis

Brightfield Illumination
Brightfield illumination is the simplest method of trans-illumination. In this modality, light from an illumination source is collected by a condenser and passed through a sample, which is observed by its effect on the intensity of the transmitted light. Brightfield illumination only requires an illumination source (i.e., an illumination kit) and a condenser to be attached to a DIY Cerna system.

 

Buttercup Root
Click to Enlarge

DIC Image of a Buttercup Root

DIC Imaging
In differential interference contrast (DIC) imaging, light transmitted through the sample is manipulated by a number of polarization optics. Light from the illumination source is polarized and then split into two orthogonally polarized beams before it reaches the sample. Small differences in the optical path length experienced by the two beams cause interference when the beams are recombined, providing enhanced contrast for sample features that would be transparent under brightfield illumination. In addition to an illumination source and a condenser, DIC imaging requires several additional optical elements: a DIC polarizer, a condenser prism, an objective prism, and an analyzer.

 

Mouse Retina
Click to Enlarge

Dodt Contrast Image of a Mouse Retina

Dodt Contrast
Dodt gradient contrast, also known more simply as Dodt contrast, can be understood as an improvement upon oblique illumination. Both methods use a mask to generate an illumination gradient, but in Dodt contrast, the mask occurs much earlier in the optical path. This configuration improves the image contrast to a point where it is comparable to that obtained using DIC.

The Dodt illumination gradient is generated using a specially shaped quarter annulus and diffusers, and reveals thickness changes in a sample over the field of view. Compared to brightfield illumination, Dodt contrast offers improved resolution of sample features, and compared to DIC, it allows thicker samples to be studied. Thorlabs manufactures a pre-configured, pre-aligned illumination module for Dodt contrast that generates the desired gradient; it requires an illumination source and a condenser for operation.

 

Mouse Retina
Click to Enlarge

Laser Scanned Image of a Flower Bud

Laser Scanning
Like epi-fluorescence, laser scanning makes use of fluorescent labels and intrinsic fluorescence in a specimen to identify sample features. Unlike epi-fluorescence, laser scanning is able to resolve thin individual planes relatively deep into a thick sample, enabling 3D volumetric images and opening the door to in vivo studies.

Laser scanning techniques (e.g., multiphoton and confocal microscopy) rely upon the coherence of laser beams to provide significantly improved axial resolution. In confocal microscopy, a pinhole eliminates the out-of-focus light that would reduce the axial resolution (as it does in epi-fluorescence), while in multiphoton microscopy, the necessity of two- or three-photon absorption by the fluorophore, a low-probability event, effectively creates optical sections.

Additional details are available at our laser scanning microscopy tutorial.

Thorlabs Dovetail Referencea
Type Shape Outer Dimension Angle
95 mm Linear 95 mm 45°
D1N Circular Ø2.018" 60°
D2Nb Circular Ø1.50" 90°
D2NBb Circular Ø1.50" 90°
D3N Circular Ø45 mm 70°
D5N Circular Ø1.58" 90°
D6N Circular Ø1.90" 90°
D7N Circular Ø2.05" 90°
D1T Circular Ø1.50" 60°
D3T Circular Ø1.65" 90°
D1Y Circular Ø107 mm 60°
D2Y Circular Ø2.32" 50°
D3Y Circular Ø1.75" 90°
D4Y Circular Ø56 mm 60°
D5Y Circular Ø46 mm 60°
D6Y Circular Ø41.9 mm 45°
D1Z Circular Ø54 mm 60°
D2Z Circular Ø57 mm 60°
D3Z Circular Ø54 mm 45°
  • These dovetail designations are specific to Thorlabs products and are not used by other microscope manufacturers.
  • D2N and D2NB dovetails have the same outer diameter and angle, as defined by the drawings below. The D2N designation does not specify a height. The D2NB designation specifies a dovetail height of 0.40" (10.2 mm).
Mating Circular Dovetails
Click to Enlarge

This photo shows the male D1N dovetail on the trinoculars next to the female D1N dovetail on the epi-illumination arm.
Mating Linear Dovetails
Click to Enlarge

This photo shows the male 95 mm dovetail on the microscope body and the female 95 mm dovetail on the CSA1002 Fixed Arm.

Introduction to Microscope Dovetails

Dovetails are used for mechanical mating and optical port alignment of microscope components. Components are connected by inserting one dovetail into another, then tightening one or more locking setscrews on the female dovetail. Dovetails come in two shapes: linear and circular. Linear dovetails allow the mating components to slide before being locked down, providing flexible positioning options while limiting unneeded degrees of freedom. Circular dovetails align optical ports on different components, maintaining a single optical axis with minimal user intervention.

Thorlabs manufactures many components which use dovetails to mate with our own components or those of other manufacturers. To make it easier to identify dovetail compatibility, we have developed a set of dovetail designations. The naming convention of these designations is used only by Thorlabs and not other microscope manufacturers. The table to the right lists all the dovetails Thorlabs makes, along with their key dimensions.

In the case of Thorlabs’ Cerna® microscopes, different dovetail types are used on different sections of the microscope to ensure that only compatible components can be mated. For example, our WFA2002 Epi-Illuminator Module has a male D1N dovetail that mates with the female D1N dovetail on the microscope body's epi-illumination arm, while the CSS2001 XY Microscopy Stage has a female D1Y dovetail that mates with the male D1Y dovetail on the CSA1051 Mounting Arm.

To learn which dovetail type(s) are on a particular component, consult its mechanical drawing, available by clicking on the red Docs icon (Docs Icon) below. For adapters with a female dovetail, the drawing also indicates the size of the hex key needed for the locking setscrew(s). It is important to note that mechanical compatibility does not ensure optical compatibility. Information on optical compatibility is available from Thorlabs' web presentations.

For customers interested in machining their own dovetails, the table to the right gives the outer diameter and angle (as defined by the drawings below) of each Thorlabs dovetail designation. However, the dovetail's height must be determined by the user, and for circular dovetails, the user must also determine the inner diameter and bore diameter. These quantities can vary for dovetails of the same type. One can use the intended mating part to verify compatibility.

In order to reduce wear and simplify connections, dovetails are often machined with chamfers, recesses, and other mechanical features. Some examples of these variations are shown by the drawings below.

Male Microscope Dovetails
Click to Enlarge

Two examples of how circular male dovetails can be manufactured.
Female Microscope Dovetails
Click to Enlarge

Two examples of how circular female dovetails can be manufactured.

Standard Mechanical Interfaces on DIY Cerna® Components

The table below gives the dovetail, optical component threads, and cage system interfaces that are present on each DIY Cerna component. If a DIY Cerna component does not have one of the standard interfaces in the table, it is not listed here. Please note that mechanical compatibility does not ensure optical compatibility. Information on optical compatibility is available from Thorlabs' web presentations.

Item # Microscope Dovetails Optical Component Threadsa Cage Systemsb
95 mm D1N D2N D2NB D3N D5N D1T D3T D1Y D5Y Internal External
2CM1 - - - - - - - - - - SM1c (1.035"-40) and SM2d (2.035"-40) SM1c (1.035"-40) 60 mmd
2CM2 - - - - - - - - - - SM1c (1.035"-40) and SM2d (2.035"-40) SM1c (1.035"-40) 30 mmc
BSA2000e - - - - Female - - - - - - - -
CEA1350 Male Female - - - - - - - - - - 60 mmd
CEA1400 Male Female - - - - - - - - - - 60 mmd
CEA1500 Male Female - - - - - - - - - - 60 mmd
CEA1600 Male Female - - - - - - - - - - 60 mmd
CFB1500 Male - - - - - - - - - - - -
CSA1000 Female - - - - - - - - - - - -
CSA1001 Female - - - - - - - - - SM1c (1.035"-40) - 30 mmc
CSA1002 Female - - - - - - - - - SM2d (2.035"-40) - 60 mmd
CSA1003 - Female - - - - - - - - - - 60 mmd
CSA1051 Female - - - - - - - Male - - - -
CSA1200e,f - - - - - - - - - - - - 60 mmd
CSA1400e - - - - - - Female - - - - - 60 mmd
CSA1500e,g - - - - - - - - - - - - -
CSA2000e - - - - Female - - - - - SM2d (2.035"-40) - 60 mmd
CSA2001 - - - - Female - - - - - - SM2d (2.035"-40) -
CSA2100e - - - - - - - - - - SM2d (2.035"-40) - 60 mmd
CSA3000(/M) - Male - - - - - - - - - - -
CSA3010(/M) - Male - - - - - - - - - - 30 mmc and 60 mmd
Item # 95 mm D1N D2N D2NB D3N D5N D1T D3T D1Y D5Y Internal External Cage Systems
CSC1001 - - - - Male - - - - - - - -
CSC1002 - - - - Male - - - - - - - -
CSC2001 - - - - Male - - - - - - - -
CSD1001 - Male & Female - Female - - - - - - - - -
CSD1002 - Male & Female - - - - - - - - - C-Mounth -
CSE2000 - Male & Female - - - - - - - - - - 60 mmd
CSE2100 - Male & Female - - - - - Female - - SM1c (1.035"-40) - 30 mmc and 60 mmd
CSE2200 - Male & Female - - - - - Female - - SM1c (1.035"-40) - 30 mmc and 60 mmd
CSN100e - - - - - - - - - - M32 x 0.75 - 60 mmd
CSN110 - - - - - - Male - - - M32 x 0.75 - 30 mmc and 60 mmd
CSNK10 - - - - - - - - - - M32 x 0.75 - 60 mmd
CSNK100e - - - - - - - - - - M32 x 0.75 - 60 mmd
CSN200 - - - - - - Male - - - M32 x 0.75 - -
CSN210 - - - - - - Male - - - M32 x 0.75 - -
CSN1201f - - - - - - - - - - M32 x 0.75 - -
CSN1202f - - - - - - - - - - M25 x 0.75 - -
CSS2001 - - - - - - - - Female - - - -
LAURE1 - Male Female - - - - - - - - - -
LAURE2 - Male Female - - - - - - - - - -
LCPN1 - - - - Male - - - - - SM30 (M30.5 x 0.5) - 30 mmc and 60 mmd
LCPN2 - Male - - - - - - - - SM30 (M30.5 x 0.5) - 30 mmc and 60 mmd
Item # 95 mm D1N D2N D2NB D3N D5N D1T D3T D1Y D5Y Internal External Cage Systems
LCPN3 - Male - - - - - - - Female SM30 (M30.5 x 0.5) - 60 mmd
LCPN4 - Male - - - - - - - - SM2d (2.035"-40) - 60 mmd
LCPN5 - - - - Male - - - - - SM2d (2.035"-40) - 60 mmd
LCPN6 - - Female - - - - - - - SM1c (1.035"-40) - 30 mmc and 60 mmd
LCPY2 - - - - - - - - - Male SM30 (M30.5 x 0.5) - 30 mmc and 60 mmd
LCPY3 - - - - - - - - - Female - - 30 mmc and 60 mmd
OPX2400(/M) - Male & Female - - - - - - - - SM2d (2.035"-40) - 60 mmd
SM1A70 - - - - - - - - - - SM30 (M30.5 x 0.5) SM1c (1.035"-40) -
SM1A58 - - Male Male - - - - - - SM1c (1.035"-40) SM2d (2.035"-40) 30 mmc
SM2A56 - - - - - - - Male - - - SM2d (2.035"-40) -
SM2A59 - Male - - - - - - - - SM2d (2.035"-40) - -
TC1X - - Male - - - - - - - - - -
WFA0150 Female - - - - - - - - - - - -
WFA1000 - - - - - - - - - - - - 30 mmc
WFA1010 - - - - - - - - - - SM1c (1.035"-40) - 30 mmc
WFA1020 - - - - - - - - - - SM1c (1.035"-40) - 30 mmc
WFA1051 - - - - - - - - - - SM1c (1.035"-40) - 30 mmc
WFA1100 - - - - - - - - - - - - 30 mmc
WFA2001 - Male & Female - - - - - - - - SM1c (1.035"-40) SM1c (1.035"-40) -
WFA2002 - Male & Female - - - - - - - - SM1c (1.035"-40) - 30 mmc
Item # 95 mm D1N D2N D2NB D3N D5N D1T D3T D1Y D5Y Internal External Cage Systems
WFA4100 - Male - - - - - - - - SM1c (1.035"-40) C-Mounth -
WFA4101 - Male - - - - - - - - SM1c (1.035"-40) C-Mounth -
WFA4102 - Male - - - - - - - - SM1c (1.035"-40) C-Mounth -
WFA4111 - Male - - - - - - - - - SM2d (2.035"-40) -
WFA4112 - - - Male - - - - - - - C-Mounth -
XT95RC1(/M) Female - - - - - - - - - - - -
XT95RC2(/M) Female - - - - - - - - - - - -
XT95RC3(/M) Female - - - - - - - - - - - -
XT95RC4(/M) Female - - - - - - - - - - - -
XT95P12(/M) Female - - - - - - - - - - - -
ZFM1020 Female - - - - - - - - - - - -
ZFM1030 Female - - - - - - - - - - - -
ZFM2020 Female - - - - - - - - - - - -
ZFM2030 Female - - - - - - - - - - - -
  • Thorlabs' optical component thread adapters can be used to convert between C-Mount threads, SM1 threads, SM2 threads, and virtually every other optical thread standard.
  • Our cage system size adapters and drop-in adapter can be used to convert between 16 mm, 30 mm, and 60 mm cage systems.
  • Our 30 mm cage plates can convert between SM1 lens tubes and 30 mm cage systems.
  • Our 60 mm cage plates can convert between SM2 lens tubes and 60 mm cage systems.
  • Attach to a ZFM focusing module to add a female 95 mm dovetail.
  • The CSA1200 mounting arm is compatible with the CSN1201 and CSN1202 nosepieces.
  • This blank arm is designed for custom DIY machining for non-standard components, threads, and bores.
  • C-Mount and CS-Mount standards feature the same 1.00"-32 threads, but C-Mounts have a 5 mm longer flange-to-sensor distance.

Building a Cerna® Microscope

The Cerna microscopy platform's large working volume and system of dovetails make it straightforward to connect and position the components of the microscope. This flexibility enables simple and stable set up of a preconfigured microscope, and provides easy paths for later upgrades and modification. See below for a couple examples of the assembly of some DIY Cerna microscopes.

DIY Cerna Design and Assembly


Walkthrough of a DIY Microscope Configuration
This DIY microscope uses a CSA3000(/M) Breadboard Top, a CSA2001 Dovetail Adapter, our CSA1001 and CSA1002 Fixed Arms, and other body attachments and extensions. These components provide interfaces to our lens tube and cage construction systems, allowing the rig to incorporate two independent trans-illumination modules, a home-built epi-illumination path, and a custom sample viewing optical path.
DIY Microscope Configuration Assembly
The simplicity of Thorlabs optomechanical interfaces allows a custom DIY microscope to be quickly assembled and reconfigured for custom imaging applications.

Posted Comments:
Ik Hwan Kwon  (posted 2022-04-01 16:38:55.77)
Hello. I have question for using CSE 2000 control program. I installed CSE 2000 control program version 4.0. However, It looks non-connected hardware to PC. Because, When I started program, It doesn't show any control panel even CSE 2000 connected with PC using USB 2.0 cable. (it only shows that "File" menu button & Thorlabs "logo mark") Could you solve this problem?
cdolbashian  (posted 2022-04-05 04:22:07.0)
Thank you for reaching out to us with this troubleshooting issue. I have reached out to you directly to identify and solve your problem. For future technical support requests, please feel free to contact Techsupport@thorlabs.com.
Ed Carlen  (posted 2021-09-26 16:47:28.093)
According the optical diagram of the WFA2001, lens 4 is the LBF254-100A with a focal length of 100mm. However, the distance D1 (in optical diagram) is specified to be 110mm from bottom of dovetail to the back focal plane of the objective. Are these specifications correct?
cdolbashian  (posted 2021-11-09 03:35:35.0)
Thank you for reaching out to us at Thorlabs. based on the drawing in the optical diagram, I see your confusion. The optical path from the back of lens 4 to the back focal plane of the objective is ~174mm, which is notably longer than the focal length of lens 4 (100mm), so it would seem like the light would converge at some intermediate distance between lens 4 and the back focal plane of the objective. However, the light between lens 3 and 4 is still diverging, so that the focal point of the 100mm lens is still at the back focal plane, rather than ~100mm beyond the last lens surface. I have reached out to you to discuss this further!
Noah Kolodziejski  (posted 2020-06-19 12:39:20.157)
For CSE2200, I would like to move the last lens before the excitation filter to the bottom of the unit to buy extra distance between CSE2200 and the objective. This is so that I might fit a laser autofocus assembly between CSE2200 and the objective lens, and I like having an infinity corrected system in the filter area, allowing me to stack additional spectroscopic hardware above the CSE 2200. Is this violating some fundamental of the device or is it achievable ?
YLohia  (posted 2020-07-21 04:29:06.0)
Thank you for contacting Thorlabs. We do not recommend doing this. The lenses within the CSE2200 are designed for light delivery, not imaging. It is not a tube lens. The camera usually sits on top with a separate tube lens before it, something like the WFA4100. If you want a filter wheel, you could use the CSE2000 and use the cage rod connections to build your autofocus in, or you could get a LCPN2 to build you own setup on top of the CSE2x00.
user  (posted 2020-03-22 13:24:07.763)
For CSE2100, is it possible to have AR coated optics for NIR or IR range? I also want to have the light in/out from the side port on CSE 2100. (So the returning light is not directed into the camera). Instead of using a two-position slider, is it possible to have a thin gold mirror (25mmx36mmx1mm) to replace the dichroic mirror in side the filter cube?
YLohia  (posted 2020-04-13 11:09:29.0)
Hello, thank you for contacting Thorlabs. We can offer a B-coated version of the CSE2100 as a custom option. I have reached out to you directly to discuss other options.
t.isaac  (posted 2018-02-20 15:54:41.667)
Are there any plans to make a dovetail adapter with a D3T female port and an external thread such as SM2? I would find this very useful for interchanging parts from the Cerna microscope inputs to other setups.
llamb  (posted 2018-03-31 02:18:56.0)
Hello, thank you for contacting Thorlabs. While we currently have the SM2A56 adapter with a male D3T dovetail and external SM2 threads, we do not plan to release an adapter with a female D3T port and external SM2 threads soon. I will add this to our internal product forum.
parksj003  (posted 2017-03-31 09:35:00.697)
The The filter qube is working with a Nikon Eclipse Ti. Thanks Seongjun Park
tfrisch  (posted 2017-04-18 04:43:12.0)
Hello, thank you for this additional information.
parksj003  (posted 2017-03-31 09:27:15.397)
Hello, I am looking for a module for 9103 (filter qube mady by Chroma)to work with Thorlabs' cage components. (something like WFA2002). Would you let me know if there is any? Best, Seongjun Park
tfrisch  (posted 2017-04-18 04:24:20.0)
Hello, thank you for contacting Thorlabs. I will reach out to you directly about your application. I will need more details on 9103.

Click on the different parts of the microscope to explore their functions.

Explore the Cerna MicroscopeSample Viewing/RecordingSample MountingIllumination SourcesIllumination SourcesObjectives and MountingEpi-IlluminationEpi-IlluminationTrans-IlluminationMicroscope BodyMicroscope BodyMicroscope BodyMicroscope Body

Elements of a Microscope

This overview was developed to provide a general understanding of a Cerna® microscope. Click on the different portions of the microscope graphic to the right or use the links below to learn how a Cerna microscope visualizes a sample.

 

Terminology

Arm: Holds components in the optical path of the microscope.

Bayonet Mount: A form of mechanical attachment with tabs on the male end that fit into L-shaped slots on the female end.

Bellows: A tube with accordion-shaped rubber sides for a flexible, light-tight extension between the microscope body and the objective.

Breadboard: A flat structure with regularly spaced tapped holes for DIY construction.

Dovetail: A form of mechanical attachment for many microscopy components. A linear dovetail allows flexible positioning along one dimension before being locked down, while a circular dovetail secures the component in one position. See the Microscope Dovetails tab or here for details.

Epi-Illumination: Illumination on the same side of the sample as the viewing apparatus. Epi-fluorescence, reflected light, and confocal microscopy are some examples of imaging modalities that utilize epi-illumination.

Filter Cube: A cube that holds filters and other optical elements at the correct orientations for microscopy. For example, filter cubes are essential for fluorescence microscopy and reflected light microscopy.

Köhler Illumination: A method of illumination that utilizes various optical elements to defocus and flatten the intensity of light across the field of view in the sample plane. A condenser and light collimator are necessary for this technique.

Nosepiece: A type of arm used to hold the microscope objective in the optical path of the microscope.

Optical Path: The path light follows through the microscope.

Rail Height: The height of the support rail of the microscope body.

Throat Depth: The distance from the vertical portion of the optical path to the edge of the support rail of the microscope body. The size of the throat depth, along with the working height, determine the working space available for microscopy.

Trans-Illumination: Illumination on the opposite side of the sample as the viewing apparatus. Brightfield, differential interference contrast (DIC), Dodt gradient contrast, and darkfield microscopy are some examples of imaging modalities that utilize trans-illumination.

Working Height: The height of the support rail of the microscope body plus the height of the base. The size of the working height, along with the throat depth, determine the working space available for microscopy.

 

microscope bodyClick to Enlarge
Cerna Microscope Body
Body Height Comparison
Click to Enlarge

Body Details

Microscope Body

The microscope body provides the foundation of any Cerna microscope. The support rail utilizes 95 mm rails machined to a high angular tolerance to ensure an aligned optical path and perpendicularity with the optical table. The support rail height chosen (350 - 600 mm) determines the vertical range available for experiments and microscopy components. The 7.74" throat depth, or distance from the optical path to the support rail, provides a large working space for experiments. Components attach to the body by way of either a linear dovetail on the support rail, or a circular dovetail on the epi-illumination arm (on certain models). Please see the Microscope Dovetails tab or here for further details.

 

microscope bodyClick to Enlarge
Illumination with a Cerna microscope can come from above (yellow) or below (orange). Illumination sources (green) attach to either.

Illumination

Using the Cerna microscope body, a sample can be illuminated in two directions: from above (epi-illumination, see yellow components to the right) or from below (trans-illumination, see orange components to the right).

Epi-illumination illuminates on the same side of the sample as the viewing apparatus; therefore, the light from the illumination source (green) and the light from the sample plane share a portion of the optical path. It is used in fluorescence, confocal, and reflected light microscopy. Epi-illumination modules, which direct and condition light along the optical path, are attached to the epi-illumination arm of the microscope body via a circular D1N dovetail (see the Microscope Dovetails tab or here for details). Multiple epi-illumination modules are available, as well as breadboard tops, which have regularly spaced tapped holes for custom designs.

Trans-illumination illuminates from the opposite side of the sample as the viewing apparatus. Example imaging modalities include brightfield, differential interference contrast (DIC), Dodt gradient contrast, oblique, and darkfield microscopy. Trans-illumination modules, which condition light (on certain models) and direct it along the optical path, are attached to the support rail of the microscope body via a linear dovetail (see Microscope Dovetails tab or here). Please note that certain imaging modalities will require additional optics to alter the properties of the beam; these optics may be easily incorporated in the optical path via lens tubes and cage systems. In addition, Thorlabs offers condensers, which reshape input collimated light to help create optimal Köhler illumination. These attach to a mounting arm, which holds the condenser at the throat depth, or the distance from the optical path to the support rail. The arm attaches to a focusing module, used for aligning the condenser with respect to the sample and trans-illumination module.

 

microscope bodyClick to Enlarge
Light from the sample plane is collected through an objective (blue) and viewed using trinocs or other optical ports (pink).

Sample Viewing/Recording

Once illuminated, examining a sample with a microscope requires both focusing on the sample plane (see blue components to the right) and visualizing the resulting image (see pink components).

A microscope objective collects and magnifies light from the sample plane for imaging. On the Cerna microscope, the objective is threaded onto a nosepiece, which holds the objective at the throat depth, or the distance from the optical path to the support rail of the microscope body. This nosepiece is secured to a motorized focusing module, used for focusing the objective as well as for moving it out of the way for sample handling. To ensure a light-tight path from the objective, the microscope body comes with a bellows (not pictured).

Various modules are available for sample viewing and data collection. Trinoculars have three points of vision to view the sample directly as well as with a camera. Double camera ports redirect or split the optical path among two viewing channels. Camera tubes increase or decrease the image magnification. For data collection, Thorlabs offers both cameras and photomultiplier tubes (PMTs), the latter being necessary to detect fluorescence signals for confocal microscopy. Breadboard tops provide functionality for custom-designed data collection setups. Modules are attached to the microscope body via a circular dovetail (see the Microscope Dovetails tab or here for details).

 

microscope bodyClick to Enlarge
The rigid stand (purple) pictured is one of various sample mounting options available.

Sample/Experiment Mounting

Various sample and equipment mounting options are available to take advantage of the large working space of this microscope system. Large samples and ancillary equipment can be mounted via mounting platforms, which fit around the microscope body and utilize a breadboard design with regularly spaced tapped through holes. Small samples can be mounted on rigid stands (for example, see the purple component to the right), which have holders for different methods of sample preparation and data collection, such as slides, well plates, and petri dishes. For more traditional sample mounting, slides can also be mounted directly onto the microscope body via a manual XY stage. The rigid stands can translate by way of motorized stages (sold separately), while the mounting platforms contain built-in mechanics for motorized or manual translation. Rigid stands can also be mounted on top of the mounting platforms for independent and synchronized movement of multiple instruments, if you are interested in performing experiments simultaneously during microscopy.

Close

 

For sample viewing, Thorlabs offers trinoculars, double camera ports, and camera tubes. Light from the sample plane can be collected via cameras, photomultiplier tubes (PMTs), or custom setups using breadboard tops. Click here for additional information about viewing samples with a Cerna microscope.

Product Families & Web Presentations
Sample Viewing Breadboards
& Body Attachments
Cameras PMTs

Close

 

Microscope objectives are held in the optical path of the microscope via a nosepiece. Click here for additional information about viewing a sample with a Cerna microscope.

Close

 

Large and small experiment mounting options are available to take advantage of the large working space of this microscope. Click here for additional information about mounting a sample for microscopy.

Close

 

Thorlabs offers various light sources for epi- and trans-illumination. Please see the full web presentation of each to determine its functionality within the Cerna microscopy platform.

Close

 

Epi-illumination illuminates the sample on the same side as the viewing apparatus. Example imaging modalities include fluorescence, confocal, and reflected light microscopy. Click here for additional information on epi-illumination with Cerna.

Product Families & Web Presentations
Epi-Illumination Web Presentation Body Attachments Light Sources
Epi-Illumination Body Attachments Light Sources

Close

 

Trans-illumination illuminates from the opposite side of the sample as the viewing apparatus. Example imaging modalities include brightfield, differential interference contrast (DIC), Dodt gradient contrast, oblique, and darkfield microscopy. Click here for additional information on trans-illumination with Cerna.

Product Families & Web Presentations
Brightfield Web Presentation DIC Web Presentation Dodt Web Presentation Condensers Web Presentation Condenser Mounting Web Presentation Illumination Kits Web Presentation Other Light Sources
Brightfield DIC Dodt Condensers Condenser Mounting Illumination Kits Other Light Sources

Close

 

The microscope body provides the foundation of any Cerna microscope. The 7.74" throat depth provides a large working space for experiments. Click here for additional information about the Cerna microscope body.

Product Families & Web Presentations
Microscope Body Web Presentation Microscope Body Translator
Microscope Bodies Microscope Translator
Back to Top

Epi-Illuminator Modules for One Filter Cube

Installation of the MDFM-MF2 Filter Cube (Sold Below) with a Filter Set into
the WFA2001 Single-Cube Epi-Illuminator Module
Epi-Illuminator Schematic
Click for Details

Optical Diagram for WFA2001 (See Optical Diagrams Tab for More Details)
  • WFA2001: Pre-Installed Optical Path that Accepts an Uncollimated Illumination Source with a Ø3 mm Core Liquid Light Guide or SM1 Threads
  • WFA2002: Build Your Own Optical Path using SM1 and 30 mm Cage Components
  • Magnetic Door Cover Holds One Olympus-Compatible Filter Cube
  • Stackable Design with Female and Male D1N Dovetails on Top and Bottom, Respectively
  • MDFM-MF2 Filter Cube is Sold Separately Below

These epi-illuminator modules hold one filter cube in the epi-illumination pathway of a DIY Cerna system. With a female D1N dovetail on top and a male D1N dovetail on the bottom, they are designed to mate with the epi-illumination arm of a Cerna microscope body, as well as with each other. Additional details on dovetails are available in the Microscope Dovetails tab.

The WFA2001 Epi-Illuminator Module's optical input port has internal SM1 (1.035"-40) threads. For this port, we include two adapters: an adapter that accepts a Ø3 mm core liquid light guide and an SM1T10 adapter that accepts an uncollimated light source with an internally SM1-threaded output, such as a mounted LED. For use with a Ø5 mm core liquid light guide, the AD5LLG adapter is available for purchase separately. This module is designed so that evenness of illumination is optimized at a 110 mm working distance between the bottom of the dovetail and the back focal plane of the objective; see the optical diagram to the right. Its pre-installed optical path consists of collimating optics that are AR coated for 350 - 700 nm, as well as field stop and aperture stop diaphragms (Item # SM1D12D) that can be adjusted from Ø0.8 mm to Ø12.0 mm (Ø0.03" to Ø0.47").

In contrast, the WFA2002 Epi-Illuminator Module does not include the pre-installed optical path of the WFA2001. As shown by the photo below, removing the optical path exposes internal SM1 threads and four 4-40 taps for 30 mm cage systems on the back of the module. These mechanical interfaces enable Thorlabs' extensive selection of SM1 and 30 mm cage components to be used to build custom epi-illumination paths.

Each of these modules includes a magnetically secured cover that can be connected to an MDFM-MF2 Filter Cube (sold separately below), as shown by the animation in the upper right. Extra covers, which the user can attach to the filter cubes to speed up filter cube exchange, are sold as Item # WFA2001C.

Please note that these epi-illuminators do not have the slot required for the WFA3110 DIC Analyzer, so a custom mounting solution will be needed. The CSE2100, CSE2000, and CSE2200 Epi-Illuminator Modules sold below are directly compatible with this DIC analyzer.


Click to Enlarge

The WFA2001 Epi-Illuminator Module has a ready-to-use beam path, with field stop and aperture stop diaphragms, for a mounted LED or another uncollimated source with SM1 threads or a Ø3 mm liquid light guide.

The back of the WFA2002 Epi-Illuminator Module has internal SM1 threads and four 4-40 taps for a 30 mm cage system, which can be used to support home-built epi-illumination setups.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
WFA2001 Support Documentation
WFA2001Epi-Illuminator Module for 1 Cube, Conditioning Optics, Male & Female D1N Dovetails
$2,018.27
Today
WFA2002 Support Documentation
WFA2002Epi-Illuminator Module for 1 Cube, Male & Female D1N Dovetails
$460.04
Today
WFA2001C Support Documentation
WFA2001CExtra Filter Cube Cover for WFA2001 and WFA2002 Epi-Illuminator Modules
$206.69
Today
Back to Top

Epi-Illuminator Modules with Removable Turret for Six Filter Sets

Turret Position Sensor Software

Version 4.0 (October, 2019)

This software package contains the installation files for the GUI interface, driver, SDK, and support documentation. The software is compatible with Windows® 7 (64-bit) and Windows 10 (64-bit) systems.

Software Download

Click to Enlarge

The CSE2000 Epi-Illuminator Module features 4-40 taps to connect to a 60 mm cage system.
  • Included Removable Turret Holds Up to Six Filter Sets without the Need for Filter Cubes
  • Stackable Design with Female and Male D1N Dovetails on Top and Bottom, Respectively
  • Directly Compatible with WFA3110 DIC Analyzer
  • Monitor Filter Turret Position on a PC Using Included Software Package
  • Ready-to-Use Epi-Illuminator Modules with Beam Conditioning Optics
  • Do-It-Yourself CSE2000 Epi-Illuminator Module without Beam Conditioning Optics
  • Side Port for Additional Optical Path Included on CSE2100 and CSE2200

These Epi-Illuminator Modules hold a rotating, removable turret in the epi-illumination pathway of a DIY microscope system. One turret is included with each epi-illuminator module, and additional turrets can be purchased separately below (Item # CSE2000W). Fluorescence filter sets, beamsplitters, mirrors, and/or bandpass filters can be directly loaded into the turret without the need for filter cubes. In all models, turret position may be monitored remotely on a PC (not included) with included software; see the Software box at the top right to download the GUI installation files. In addition, a tab opens and closes a shutter that blocks the optical path directed through the excitation filter.

Unlike the WFA2001 and WFA2002 Epi-Illuminator Modules sold above, the CSE2000, CSE2100, and CSE2200 Epi-Illuminator Modules have a slot for direct compatibility with the WFA3110 DIC Analyzer.

Microscope Compatibility
With a female D1N dovetail on top and a male D1N dovetail on the bottom, these modules are designed to mate with the epi-illumination arm of a Cerna microscope body, Thorlabs' four-channel confocal microscopes, the breadboard tops sold below, other epi-illuminator modules, and other widefield viewing accessories. Additional details on dovetails are available in the Microscope Dovetails tab.

Ready-to-Use Epi-Illuminator Modules
The CSE2100 and CSE2200 include beam conditioning optics optimized for homogeneous illumination at the sample plane. The CSE2100 is designed so that evenness of illumination is optimized at a 50 mm working distance between the bottom of the dovetail and the back focal plane of the objective. The CSE2200 Epi-Illuminator Module is designed to provide a longer working distance of 150 mm, ideal for use with a Thorlabs confocal microscope system or Cerna microscopes that require additional optics between the module and the objective lens. For details, see optical diagram to the lower right.

Both the CSE2100 and CSE2200 Epi-Illuminator Modules features AR-coated optical elements designed for homogeneous illumination over 365 - 700 nm, as well as a field stop diaphragm, creating a ready-to-use optical path for the epi-illumination source. A collimated illumination source, such as our Solis® High-Power LED, can be attached using the female D3T dovetail on the back of the module; the SM2A56 adapter and LLG collimation adapters are sold below. Alternatively, by removing the back piece, a 60 mm cage system can be mounted using the 4-40 taps.

An additional optical path can also be utilized by inserting a beamsplitter or dichroic (32 mm x 44 mm, 2.0 ± 0.1 mm in thickness) into the module; please contact Tech Support for compatible dichroics or beamsplitters. This side port features internal SM1 (1.035"-40) threading as well as 4-40 taps for our 30 mm cage system.

DIY Epi-Illuminator Module
In contrast to the CSE2100 and CSE2200 (described above), the CSE2000 Epi-Illuminator Module does not include beam conditioning optics. This standalone module features four 4-40 taps for 60 mm cage systems on the back side. This mechanical interface enables Thorlabs' extensive selection of 60 mm cage components to be used to build custom epi-illumination paths. To utilize the CSE2000 with an existing microscope featuring alternate dovetails, contact Tech Support for a custom solution. 

Epi-Illuminator Schematic
Click for Details

Optical Diagram for CSE2100 or CSE2200
(See Optical Diagrams Tab for More Details)


Click to Enlarge

The CSE2100's or CSE2200's ready-to-use optical path allows an illumination source to be attached through either a D3T dovetail on a back piece, or 4-40 taps for a 60 mm cage system when the back piece is removed. The D3T dovetail can be converted to SM2 threading using the SM2A56 adapter.

Click for Details

The CSE2100 (shown here) and CSE2200 Epi-Illuminator Modules provide a field stop diaphragm and conditioning optics for the main optical path as well as a side port for an additional optical path.

Specifications
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
CSE2100 Support Documentation
CSE2100Epi-Illuminator Module with Turret for Six Filter Sets, Conditioning Optics, Additional Optical Port, WD = 50 mm
$6,318.90
Today
CSE2200 Support Documentation
CSE2200Epi-Illuminator Module with Turret for Six Filter Sets, Conditioning Optics, Additional Optical Port, WD = 150 mm
$6,318.90
Today
CSE2000 Support Documentation
CSE2000Epi-Illuminator Module with Turret for Six Filter Sets
$3,555.45
Today
Back to Top

Breadboard Tops for Microscope Bodies


Click for Details

CSA3000 Used to Mount a Custom Epi-Illuminator and Widefield Viewing Apparatus with a sCMOS Camera

Click for Details

CSA3010 Used to Mount a Custom Epi-Illuminator and Widefield Viewing Apparatus with a sCMOS Camera
  • Male D1N Dovetail on Bottom for Attachment to DIY Cerna Microscope Bodies
  • Available in Two Sizes in Imperial and Metric Versions:
    • Imperial: 14.00" x 11.00" or 18.00" x 4.60"
    • Metric: 350.0 mm x 275.0 mm or 450.0 mm x 116.8 mm
  • 1/4"-20 or M6 x 1.0 Mounting Holes
Male D1N Dovetail
Click to Enlarge

Each breadboard has a male D1N dovetail on the bottom.

These black-anodized aluminum breadboard tops support user-designed widefield viewing apparatuses, epi-illumination pathways, and laser scanning pathways on top of upright Cerna microscopes. Each contains a Ø1.5" (Ø38.1 mm) through hole that is centered on a male D1N dovetail. This dovetail allows the breadboard to be connected directly to the epi-illumination arm of the microscope body, and it can also be used to stack the breadboard on top of an epi-illumination module. Additional details on the dovetail are available in the Microscope Dovetails tab.

The breadboards are available in two sizes. The larger version [Item # CSA3000(/M)] provides additional work surface, but protrudes past the sides of the epi-illumination arm, which may restrict approach angles around the objective for micromanipulators. The smaller version [Item # CSA3010(/M)] does not restrict approach angles and also has eight 4-40 taps around the Ø1.5" through hole for 30 mm and 60 mm cage systems.

In configurations where the breadboard is mounted directly on top of the epi-illumination arm, four M4 counterbores can be used to provide additional mounting stability.

Item # CSA3000 CSA3000/M CSA3010 CSA3010/M
Dimensions (L x W) 14.00" x 11.00" 350.0 mm x 275.0 mm 18.00" x 4.60" 450.0 mm x 116.8 mm
Breadboard Thickness 1/2" 12.7 mm 1/2" 12.7 mm
Hole Size and Spacing 1/4"-20 Tapped Holes
on 1" Centers
M6 x 1.0 Tapped Holes
on 25 mm Centers
1/4"-20 Tapped Holes
on 1" Centers
M6 x 1.0 Tapped Holes
on 25 mm Centers
Number of Tapped Holes
154 154 87 89
Cage System Compatibility - Four 4-40 Taps for 30 mm Cage Systems
Four 4-40 Taps for 60 mm Cage Systems
Click for Mechanical Drawing
Dovetail Male D1N
Material Matte Black Anodized Aluminum
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
CSA3000 Support Documentation
CSA3000Breadboard Top, 14.00" x 11.00", 1/4"-20 Taps, Male D1N Dovetail
$809.42
Today
CSA3010 Support Documentation
CSA3010Breadboard Top, 18.00" x 4.60", 1/4"-20 Taps, Male D1N Dovetail
$984.11
Today
+1 Qty Docs Part Number - Metric Price Available
CSA3000/M Support Documentation
CSA3000/MBreadboard Top, 350.0 mm x 275.0 mm, M6 x 1.0 Taps, Male D1N Dovetail
$809.42
Today
CSA3010/M Support Documentation
CSA3010/MBreadboard Top, 450.0 mm x 116.8 mm, M6 x 1.0 Taps, Male D1N Dovetail
$984.11
Today
Back to Top

Breadboard Top with Two-Position Slider

Two Independent Epi-Illumination Paths
Click to Enlarge

View Imperial Product List
Item #QtyDescription
Items on Microscope Body
CEA14001Cerna Microscope Body with Epi-Illumination Arm, 400 mm Rail
PLSZ1Motorized Module with 1" Travel, 95 mm Dovetail
PLSZ11Angle Bracket for Edge-Mounted Arms
CSA12001Mounting Arm for CSN1201 and CSN1202 Nosepieces
CSN12021Nosepiece for 2 Objectives, M25 x 0.75 Threads
MCM3011Three-Channel Controller for Motorized Rigid Stands and PLS Series Stages
Items on Bottom Optical Path
OPX24001Breadboard Top with Slider, 1/4"-20 Taps, Male & Female D1N Dovetails
PFR14-P02135 mm x 52 mm Protected Silver Mirror
LCP34360 mm Cage Plate, SM2 Threads, 0.5" Thick, 8-32 Tap (Two SM2RR Retaining Rings Included)
LA14012N-BK7 Plano-Convex Lens, Ø2", f = 60 mm, Uncoated
LA13011N-BK7 Plano-Convex Lens, Ø2", f = 250 mm, Uncoated
LCP50D160 mm Cage System Iris Diaphragm (Ø2.0 - Ø50.0 mm)
LCFW5160 mm Cage Filter Wheel for Five Ø2" (Ø50 mm) Filters
NE2R03B1Unmounted Ø2" Absorptive ND Filter, Optical Density: 0.3
NE2R13B1Unmounted Ø2" Absorptive ND Filter, Optical Density: 1.3
SLSLLG11Liquid Light Guide Adapter for Broadband Light Sources, 185 nm - 2.1 µm
TRP0572Ø0.47" Pedestal Pillar Post, 8-32 Setscrew, 1/4"-20 Tap, L = 0.568"
MSC22Clamping Fork for 1/4"-20 (M6) Cap Screw
ER8-P41Cage Assembly Rod, 8" Long, Ø6 mm, 4 Pack
ER4-P41Cage Assembly Rod, 4" Long, Ø6 mm, 4 Pack
Items on Top Optical Path
WFA20021Epi-Illuminator Module for 1 Cube, Male & Female D1N Dovetails
TLV-U-MF21Microscopy Cube Assembly for Olympus AX, BX2, and IX2 Microscopes
DMLP490R125 mm x 36 mm Longpass Dichroic Mirror, 490 nm Cut-On
CP02F2SM1-Threaded 30 mm Flexure Cage Plate, 0.35" Thick, 2 Retaining Rings, Imperial
LA1172-A1N-BK7 Plano-Convex Lens, Ø1", f = 400 mm, AR Coating: 350 - 700 nm
LA1461-A1N-BK7 Plano-Convex Lens, Ø1", f = 250 mm, AR Coating: 350 - 700 nm
CP36130 mm Cage Plate, Ø1.2" Double Bore for SM1 and C-Mount Lens Tubes
M455L41455 nm, 1150 mW (Min) Mounted LED, 1000 mA
LAURE11Cerna Trinoculars with 10X Eyepieces, Upright Image, IR Filter
View Metric Product List
Item #QtyDescription
Items on Microscope Body
CEA14001Cerna Microscope Body with Epi-Illumination Arm, 400 mm Rail
PLSZ1Motorized Module with 1" Travel, 95 mm Dovetail
PLSZ11Angle Bracket for Edge-Mounted Arms
CSA12001Mounting Arm for CSN1201 and CSN1202 Nosepieces
CSN12021Nosepiece for 2 Objectives, M25 x 0.75 Threads
MCM3011Three-Channel Controller for Motorized Rigid Stands and PLS Series Stages
Items on Bottom Optical Path
OPX2400/M1Breadboard Top with Slider, M6 x 1.0 Taps, Male & Female D1N Dovetails
PFR14-P02135 mm x 52 mm Protected Silver Mirror
LCP34/M360 mm Cage Plate, SM2 Threads, 0.5" Thick, M4 Tap (Two SM2RR Retaining Rings Included)
LA14012N-BK7 Plano-Convex Lens, Ø2", f = 60 mm, Uncoated
LA13011N-BK7 Plano-Convex Lens, Ø2", f = 250 mm, Uncoated
LCP50D160 mm Cage System Iris Diaphragm (Ø2.0 - Ø50.0 mm)
LCFW5160 mm Cage Filter Wheel for Five Ø2" (Ø50 mm) Filters
NE2R03B1Unmounted Ø2" Absorptive ND Filter, Optical Density: 0.3
NE2R13B1Unmounted Ø2" Absorptive ND Filter, Optical Density: 1.3
SLSLLG11Liquid Light Guide Adapter for Broadband Light Sources, 185 nm - 2.1 µm
TRP14/M2Ø12 mm Pedestal Pillar Post, M4 Setscrew, M6 Tap, L = 14.4 mm
MSC22Clamping Fork for 1/4"-20 (M6) Cap Screw
ER8-P41Cage Assembly Rod, 8" Long, Ø6 mm, 4 Pack
ER4-P41Cage Assembly Rod, 4" Long, Ø6 mm, 4 Pack
Items on Top Optical Path
WFA20021Epi-Illuminator Module for 1 Cube, Male & Female D1N Dovetails
TLV-U-MF21Microscopy Cube Assembly for Olympus AX, BX2, and IX2 Microscopes
DMLP490R125 mm x 36 mm Longpass Dichroic Mirror, 490 nm Cut-On
CP02F/M2SM1-Threaded 30 mm Flexure Cage Plate, 0.35" Thick, 2 Retaining Rings, Metric
LA1172-A1N-BK7 Plano-Convex Lens, Ø1", f = 400 mm, AR Coating: 350 - 700 nm
LA1461-A1N-BK7 Plano-Convex Lens, Ø1", f = 250 mm, AR Coating: 350 - 700 nm
CP36130 mm Cage Plate, Ø1.2" Double Bore for SM1 and C-Mount Lens Tubes
M455L41455 nm, 1150 mW (Min) Mounted LED, 1000 mA
LAURE11Cerna Trinoculars with 10X Eyepieces, Upright Image, IR Filter
Here, a white-light illumination path has been connected to the OPX2400 using our 60 mm cage system, and a GFP fluorescence path has been mounted on top of the OPX2400 via our WFA2002 epi-illuminator module.
  • Two-Position Slider to Combine or Switch Between DIY Optical Paths
  • Slider has Internal SM2 Threads and Holds One 35 mm x 52 mm x 3 mm Optic
  • Back Port has Internal SM2 Threads and Four 4-40 Taps for Our 60 mm Cage System
  • Imperial and Metric Versions
    • OPX2400: 10.16" x 3.94" Breadboard with Double-Density 1/4"-20 Tapped Holes
    • OPX2400/M: 258 mm x 100 mm Breadboard with Double-Density M6 x 1.0 Tapped Holes
  • Stackable Design with Female and Male D1N Dovetails on Top and Bottom, Respectively
Two Independent Epi-Illumination Paths
Click to Enlarge

Slider Located Above Objective
Two Independent Epi-Illumination Paths
Click to Enlarge

Slider Not in Optical Path with Objective

The lid of the slider housing is opened by removing four cap screws with a 3 mm balldriver. The slider and the slider housing are internally SM2-threaded. Two stainless steel tracks and detents provide repeatable positioning.

The OPX2400(/M) Breadboard Top with Two-Position Slider adds a manually operated optic slider to the epi-illumination arm of a Cerna microscope body. By mounting a dichroic, beamsplitter, or mirror into the slider, users may combine or switch between widefield viewing, epi-illumination, and/or laser scanning pathways.

The optic slider has a clear aperture of Ø1.65" (Ø41.9 mm) and uses a leaf spring to retain a rectangular optic (minimum size: 34.9 mm x 51.9 mm x 2.8 mm; maximum size: 35.0 mm x 52.0 mm x 3.2 mm); the large aperture and optic size make this ideal for applications requiring large area scanning. It has internal SM2 (2.035"-40) threads that face the back of the stationary housing, allowing a tube lens to be installed at a fixed distance from the dichroic. The back of the housing also has internal SM2 threads, as well as four 4-40 taps spaced for our 60 mm cage system.

In addition, a breadboard with sixty-eight 1/4"-20 (M6 x 1.0) through-tapped holes in a double-density hole pattern is included to support a home-built optical path. More 1/4"-20 (M6 x 1.0) tapped holes (sixteen on the imperial version and eighteen on the metric version) are located on the sides of the breadboard. Measured from the top of the breadboard, the beam height is 50.0 mm. Thorlabs manufactures Ø12 mm pedestal posts that center many of our 30 mm and 60 mm cage plates at this beam height, as illustrated in this photo, which provide structural support for large or heavy setups.

Thorlabs offers a 750 nm shortpass dichroic (Item # DMSP750B) and a protected silver mirror (Item # PFR14-P02) as stocked items. Beamsplitters and dichroics at additional cutoff wavelengths are available by contacting Tech Support. Once the optic is mounted, a 5/64" (2 mm) hex balldriver can be used to fine tune the optic slider's pitch and yaw adjusters. The slider may be locked in either position by tightening the included locking screw with a 3/32" balldriver. In the photo to the upper right, the locking screw is installed in the forward position.

In laser scanning Cerna systems, we recommend attaching the tube lens using the internal SM2 threads on the slider, since this will maximize the distance available along the throat depth to mount the objective and, if desired, non-descanned detectors.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
OPX2400 Support Documentation
OPX2400Breadboard Top with Slider, 1/4"-20 Taps, Male & Female D1N Dovetails
$5,116.38
Today
+1 Qty Docs Part Number - Universal Price Available
DMSP750B Support Documentation
DMSP750B35 mm x 52 mm Shortpass Dichroic Mirror, 750 nm Cutoff
$1,575.88
Today
PFR14-P02 Support Documentation
PFR14-P0235 mm x 52 mm Protected Silver Mirror
$582.32
Today
+1 Qty Docs Part Number - Metric Price Available
OPX2400/M Support Documentation
OPX2400/MBreadboard Top with Slider, M6 x 1.0 Taps, Male & Female D1N Dovetails
$5,116.38
Today
Back to Top

Microscopy Filter Cube


Installation of Filters into the MDFM-MF2 Cube
  • Compatible with WFA2001 and WFA2002 Epi-Illuminator Modules
  • OEM Filter Cube from Olympus
  • Designed for Use with Thorlabs' and Third-Party Fluorescence Filter Sets

This OEM Filter Cube is manufactured by Olympus. It holds one set of fluorescence filters: an excitation filter (Ø25 mm, up to 5 mm thick), an emission filter (Ø25 mm, up to 3.5 mm thick), and a dichroic mirror (up to 25.2 mm x 36.0 mm x 1.0 mm). Optics can be mounted, aligned, and swapped out easily as illustrated in the video to the right. The filter cube body may be disassembled for optic installation or removal using a Phillips head screwdriver. For detailed assembly instructions, please refer to the assembly manual in the table below.

We also offer additional Thorlabs and OEM Microscope Filter Cubes that are compatible with select Olympus and Nikon Microscopes.

Item # Manufacturer
Part #
Microscope
Manufacturer
Compatible Microscopes Assembly Manual
MDFM-MF2 Olympus U-MF2 Olympus AX, BX2, and IX2 Series MDFM-MF2 Manual
Thorlabs Cerna Epi-Fluorescence Microscopes with WFA2001 or WFA2002 Epi-Illuminator Module

Please contact Tech Support with questions regarding other cube compatibility, mounting, and filter options.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
MDFM-MF2 Support Documentation
MDFM-MF2OEM Microscopy Cube Assembly for Olympus AX, BX2, IX2, and Thorlabs Cerna Microscopes with WFA2001 or WFA2002 Epi-Illuminator Module
$574.94
Today
Back to Top

Turret for Six Filter Sets


Click for Details

Remove the Top Plate from the Turret to Install Dichroics or Mirrors

Click to Enlarge

CSE2000W Filter Turret with Top Plate
  • Removable Turret Compatible with CSE2000, CSE2100, and CSE2200 Epi-Illuminator Modules
  • Easily Install Multiple Filter Sets in a Particular Configuration
  • Designed for Use with Thorlabs' and Third-Party Fluorescence Filter Sets

The CSE2000W Turret allows for simple installation of up to six fluorescence filter sets, without the need for filter cubes. This turret directly accepts up to six filter sets without requiring filter cubes: six excitation filters (Ø25.4 mm, <5.1 mm in thickness), six emission filters (Ø25.4 mm, <5.1 mm in thickness), and six rectangular optics (25 mm x 36 mm, 1 ± 0.1 mm in thickness). The emission filters are mounted at a 5° angle to reduce unwanted back reflections. Having multiple filter sets in the same turret, or multiple turrets with particular optic configurations, makes it easy to switch amongst fluorescence filter sets, beamsplitters with crossed polarizers for reflected light imaging, and mirrors. When used with the CSE2000, CSE2100, or CSE2200 epi-illuminator modules (sold above), the turret position can be monitored remotely on a PC with software included with those modules.

The circular optic apertures feature internal SM1 (1.035"-40) threading for simple mounting of Ø1" optical elements; each turret ships with twelve SM1RR retaining rings, one to secure each circular filter. To install the rectangular optics, remove the top plate of the turret by loosening the three M3 screws, then remove the leaf springs to secure each optic. The turret utilizes grip holes on either side of each filter set, both for ease of use and to ensure the optical elements are not touched once installed. Once inserted into an epi-illumination module, simply turn the exposed knurled wheel to switch the filter set in the optical path.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
CSE2000W Support Documentation
CSE2000WTurret for Six Filter Sets
$2,384.17
Today
Back to Top

Epi-Illumination Collimation Adapters

Cutaway View of LLG Collimation Adapter
Click to Enlarge

Cutaway View of LLG3A6 and LLG5A6 Collimation Adapters

To provide compatibility with our CSE2100 and CSE2200 epi-illuminator modules, Thorlabs offers collimation adapters to mount onto the end of either a Ø3 mm or Ø5 mm liquid light guide (LLG). To provide even collimation of input light, each adapter features an optic pair of an achromatic doublet and a double convex lens; see the table below for details. The LLG is secured to the back of the collimator with a screw. Each adapter utilizes a male D3T dovetail adapter.

All adapters are calibrated such that the image plane from the LLG output is located at the back aperture of the objective when used with the compatible epi-illuminator module. Each adapter allows fine adjustment to optimize illumination for your microscope or realign the image plane via the knurled ring on the thread adapter (see image to the right).

Specifications
Item # LLG3A6 LLG5A6 LLG3A7 LLG5A7
Compatible
Epi-Illuminator Module
CSE2100 CSE2200
Accepted LLG Diameter 3 mm 5 mm 3 mm 5 mm
LLG Retention Screw Thumbscrew
Mechanical Connection Male D3T Dovetail
Effective Focal Length 40 mm 70 mm
Collimating Optics Achromatic Doublet & Double Convex Lensa
AR Coating 350 nm - 650 nm
Ravg < 0.5% at Each Surface
Transmission Graph Cerna collimation adapter transmission graph
Click Here for Raw Data
Numerical Aperture 0.3
Magnification Infinite
  • Click for ray diagram and illumination graph. This is a theoretical simulation obtained at the objective back aperture between 365 nm and 650 nm when used with the Cerna CSE2100.
  • Transmission data provided for the uncoated lens.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LLG3A6 Support Documentation
LLG3A6Ø3 mm LLG Collimating Adapter for Cerna CSE2100, ARC: 350-650 nm
$749.70
Today
LLG5A6 Support Documentation
LLG5A6Ø5 mm LLG Collimating Adapter for Cerna CSE2100, ARC: 350-650 nm
$749.70
Today
LLG3A7 Support Documentation
LLG3A7Ø3 mm LLG Collimating Adapter for Cerna CSE2200, ARC: 350-650 nm
$749.70
Today
LLG5A7 Support Documentation
LLG5A7Ø5 mm LLG Collimating Adapter for Cerna CSE2200, ARC: 350-650 nm
$749.70
Today
Back to Top

Epi-Illumination Module Adapter

Item # SM2A56
Click for Details
Compatible Epi-Illumination Module
Item # (Sold Above)
CSE2100
Microscope Connection Male D3T Dovetail
Threading External SM2 (2.035"-40)
Cage Compatibility
-
Clear Aperture Ø1.40" (35.6 mm)
Adapter Profile
(Click for Drawing)
Material Stainless Steel

This adapter allows a collimated illumination source, such as Thorlabs' Solis® LEDs, to attach to the epi-illumination module of a Cerna microscope. We offer the SM2A56 adapter for use with our CSE2100 and CSE2200 epi-illuminator modules. See the table below for adapter attachment compatibility.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
SM2A56 Support Documentation
SM2A56Adapter with Male D3T Dovetail and External SM2 Threads
$116.46
Today
Back to Top

Dovetail Adapters

Cerna Camera Port Adapter
Click for Details

Here, the CSA1003 Dovetail Adapter is being used to connect a 60 mm cage system to the bottom of a WFA2002 Epi-Illuminator Module.

Click to Enlarge

Here, the WFA4111 adapter is being used to mount an SM2 lens tube on top of an WFA2002 Epi-Illuminator Module.
  • Extend Versatility of Thorlabs' Lens Tube and Cage Construction Systems to DIY Cerna Systems
  • LCPN2: Male D1N Dovetail, Internal SM30 Threads, and 30 mm and 60 mm Cage Compatibility
  • LCPN3: Male D1N Dovetail, Female D5Y Dovetail, Internal SM30 Threads, and 60 mm Cage Compatibility
  • WFA4111: Male D1N Dovetail, Internal M38 x 0.5 Threads, and External SM2 Threads
  • SM2A59: Male D1N Dovetail and Internal SM2 Threads
  • LCPN4: Male D1N Dovetail, Internal SM2 Threads, and 60 mm Cage Compatibility
  • CSA1003: Female D1N Dovetail and 60 mm Cage Compatibility

These dovetail adapters integrate the D1N dovetail on the epi-illumination arm of a Cerna microscope body with Thorlabs' SM30 (M30 x 0.5) lens tubes, SM2 (2.035"-40) lens tubes, and 30 mm and 60 mm cage systems. Additionally, the WFA4111 and SM2A59 adapters feature internal M38 x 0.5 and SM2 threads, respectively, that can directly accept one of our infinity-corrected tube lenses. We also offer the LCPN3 trinocular port adapter, designed to allow Olympus trinoculars that have a male D5Y dovetail to be used with DIY Cerna systems.

The dovetail designations are specific to Thorlabs products; see the Microscope Dovetails tab for details.

Item # LCPN2 LCPN3 WFA4111 SM2A59 LCPN4 CSA1003
Dovetaila Male D1N Male D1N
Female D5Y
Male D1N Female D1N
Threading Internal SM30b Internal
M38 x 0.5c
External SM2
Internal SM2d Internal SM2e None
Internal Thread Depth 0.76" (19.3 mm) 0.48" (12.2 mm) 0.53" (13.4 mm) 0.15" (3.8 mm) 0.45" (11.4 mm) -
Cage
Compatibility
30 mm Cage System
(4-40 Tapf, 4 Places)
60 mm Cage System
(Ø6 mm Bore, 4 Places)
60 mm Cage System
(Ø6 mm Bore, 4 Places)
Noneg 60 mm Cage System
(Ø6 mm Bore, 4 Places)
Clear Aperture Ø1.10" (27.9 mm) Ø1.47" (37.0 mm) Ø1.69" (43.0 mm) Ø1.74" (44.3 mm) Ø1.50" (38.1 mm)
Adapter Profile
(Click for Drawing)
Material Black-Anodized Aluminum
  • Additional information on dovetails is available in the Microscope Dovetails tab.
  • This internal SM30 threading is compatible with our SM30RR retaining rings. Two SM30RR retaining rings are included.
  • This internal M38 x 0.5 threading is compatible with our SM38RR retaining rings.
  • This internal threading is not deep enough for mounting optics.
  • This internal SM2 threading is compatible with our SM2RR retaining rings. One SM2RR retaining ring is included.
  • These tapped holes are on the side opposite the dovetail only.
  • An SM2-threaded cage plate can be used to convert between SM2 lens tubes and 60 mm cage systems.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LCPN2 Support Documentation
LCPN2Nikon Eclipse (Ti, Ti2, or Upright) and Cerna Microscope Trinocular Adapter, Male D1N Dovetail, Internal SM30 Threads, 30 and 60 mm Cage Compatibility
$122.28
Today
LCPN3 Support Documentation
LCPN3Customer Inspired! Nikon Eclipse (Ti, Ti2, or Upright) and Cerna Microscope Trinocular Port Adapter, Olympus Microscope Trinocular Adapter, Male D1N Dovetail, Female D5Y Dovetail, Internal SM30 Threads, 60 mm Cage Compatibility
$115.18
Today
WFA4111 Support Documentation
WFA4111Adapter with Male D1N Dovetail, External SM2 Threads, and Internal M38 x 0.5 Threads
$107.10
Today
SM2A59 Support Documentation
SM2A59Adapter with Male D1N Dovetail and Internal SM2 Threads
$70.00
Today
LCPN4 Support Documentation
LCPN4Nikon Eclipse (Ti, Ti2, or Upright) and Cerna Microscope Trinocular Adapter, Male D1N Dovetail, Internal SM2 Threads, 60 mm Cage Compatibility
$108.63
Today
CSA1003 Support Documentation
CSA1003Adapter with Female D1N Dovetail and Bores for 60 mm Cage System
$289.85
Today